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Chapter 1

Justification for feedback control

If a PhD candidate in control theory is asked, ‘in what applications should feedback
be applied?’, he will typically struggle to deliver a learned response. This usually is
not a consequence of a lack of rigorous training in control theory. More often than
not, it is the result of weaknesses in the training process itself. The academy has
over the last few decades increasingly distanced itself from control applications in
favor of strictly theoretical development. The result is a population of PhDs in
control who is expert in elegant (if not always applicable) mathematics and
crashingly ignorant in the engineering of control design. This has opened an ever-
widening rift between the academic and industrial control communities. The former
largely disregards the latter as primitive; the latter disregards the former as pur-
veyors of the useless.

So, what is the answer to this most basic questions? Before it is presented, the
liabilities associated with feedback control are discussed. Compare two systems
with block diagrams shown in Figures 1.1 and 1.2. The first system is open-loop,
where the output y is the result of function G acting on input u. G is a mathematical
model of the plant. Often the output is the product Gu, as is the case when applying
the Laplace Transform operator to both the system’s impulse response and the input
function. Methods of plant modeling are presented in Chapter 2. The second system
is closed-loop, where the sum of the output and sensor noise n is compared to the
reference input, and the difference e is input to system Gc in cascade with G. Gc

is the feedback compensator, the result of the engineer’s design to improve the
performance of the system. The following are deleterious effects of the application
of feedback:

1. The feedback system requires the purchase and integration of a sensor(s). This
increases the cost in comparison to the open-loop system.

2. All sensors generate noise. This signal is in the feedback loop and generates an
unwanted input to the plant.

3. The application of feedback can result in instability. This is discussed in detail
in Chapter 5.

4. In most cases, the application of feedback reduces the gain of the system. This
is discussed in detail in Chapter 6.

What does the feedback provide that justifies the problems it presents? Con-
sider some applications where the use of feedback might be indicated.



1.1 Tracking

A common requirement is that the plant output follows the input. Unless G is unity,
the open-loop system will not track signal u. If the plant is a dynamic system, the
response is defined in part by the equations of G. The feedback system input to the
plant is a function of the tracking error r – y, and a correctly designed system can
force the plant to track the input. So is the feedback mandatory for the tracking
application? Consider the case where the plant parameters are invariant, and func-
tion G models the plant perfectly. The open-loop control G–1 in series with G tracks
the input (Figure 1.3). So, why would one suffer the expense and risk of introducing
feedback when such a straightforward solution to the tracking problem exists?

There are inherent weaknesses in this open-loop approach. G–1 may be an
improper or unstable system. Another problem occurs in practical applications. The
assumptions that G perfectly models the plant, and that the plant parameters are
invariant are almost never good ones. In addition to plant parameter uncertainty
that is always a consideration, such tight modeling requires expensive actuation,
with well-known and invariant parameters. The feedback tracking system acts on
the difference between the desired and actual output, and as such is superior to the
open loop system for most applications.
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1.1.1 Disturbance rejection
The environment typically has unwanted influence on the output of the system.
This can be modeled as a source d additive at either the input or output of the
plant block (Figure 1.4). The effect of these disturbances must be attenuated.
How is this achieved? Consider the case of the disturbance signal d known by
the designer perfectly, and the actuator dynamics are perfectly modeled by
A, which has inverse A�1. Then the disturbance can be canceled by the input
signal u = �A�1d.

Similar to the tracking case, the open-loop approach to disturbance rejection is
usually not practical. Perfect knowledge of the disturbance signal is rare. A perfect
model A requires extremely precise (and expensive) actuation. The well-designed
feedback control system makes the system automatic, tracking the reference input
and rejecting the disturbance with cheaper actuation.

1.1.2 Sensitivity to parameter variation
Fatigue, temperature sensitivity and the like may change actuator and plant
dynamics. For the open-loop tracking system, fixed compensator G–1 no longer
necessarily perfectly cancels the dynamics, and performance is reduced. It will be
shown that the feedback system reduces sensitivity to parameter variation.
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Figure 1.4 Block diagram of a control system with disturbances modeled:
(a) additive at the plant input and (b) additive at the plant output
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1.1.3 Transient response
Transient response characteristics (typically related to the input step function) are
considered with tracking and disturbance rejection performance. A list of common
transient response (to step input) characteristics follows.

1. Rise time: the time for the system to reach a fraction of its final value, typically
0.9.

2. Overshoot: the ratio of the peak response value to its final value.
3. Settling time: the time after which the response is bounded within an interval,

typically ±5 or 10% of the final value.

The plant response to input u may not be acceptable. Excessive overshoot, or
lengthy settling times are examples, shown in Figures 1.5 and 1.6. Feedback can
improve these characteristics, but aggressive feedback controllers, while improving
the rise time, can degrade overshoot and settling time. As we will see in Chapter 6,
for frequency domain feedback designs, transient response characteristics of the
closed-loop system should be considered secondary to maximizing feedback.
Prefilters are designed to improve the transient response of these systems after the
feedback control design is completed. In this manner, time domain and frequency
domain performance measures are considered separately.
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1.2 Exercises

1. In what circumstances are the application of feedback indicated?
2. Explain the limitations of open-loop control.
3. Describe the conditions whereby open-loop tracking is perfect. Why is this

rare in actual applications?
4. What are the disadvantages of feedback control?
5. How can the transient response of a system be improved without the applica-

tion of feedback?
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Figure 1.6 Examples of poor temporal responses: excessive settling time
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Chapter 2

Plant descriptions

Understanding the plant is the most important part of control design.
Everybody knows control theory . . . most ignore the plant.

– Anonymous

Accurate knowledge of plant characteristics is essential for high-performance
control design. Depending on the plant, good knowledge of input mapping might be
difficult to obtain. For instance, the dynamics of the plant might be nonlinear and
designer only knows the system’s characteristics in the close neighborhood of a
particular operating point. In such a case, control is feasible only in this neigh-
borhood. The plant might be highly resonant, but the control designer only has
good knowledge of the modes up to a boundary frequency. Feedback control at
frequencies higher than this is potentially destructive.

Typically, a mathematical model of the plant dynamics, consisting of a set of
equations with time or frequency as the independent variable, is developed for
control design purposes. Although useful from a mathematical perspective, the
development of a plant model of sufficient fidelity for high-performance control
can be an arduous, if not impossible, task. Simple systems with lumped parameters,
such as a mass-spring-damper with a force input, are well suited for accurate model
development. The three parameters of this second-order system are usually easy to
find. However, it is common in real applications for the plant to have additional
dynamics beyond what is described in first principles models. Although the second-
order model of the mass-spring-damper captures the rigid body mode, it does not
include the flexible body dynamics that the actual system might exhibit at higher
frequencies, the presence of which can threaten the stability of a feedback con-
troller if not compensated for. To augment the second-order model to include these
dynamics is no longer the straightforward task of determining easily measured
parameters, but a complicated modeling task, perhaps involving distributed para-
meters. Confidence in such high-order models is often low.

An alternative is to determine the system’s response experimentally. Using the
mass-spring-damper example, the response of the system to input forces can be
measured by a sensor placed on the mass (e.g. an accelerometer). The input and
response signals are recorded and processed so that the plant dynamics are revealed.
Additional dynamics not captured by the rigid body model may be revealed without



necessitating the development of a mathematical model that included them and
control design can proceed taking into consideration these potential hazards.
However, there are drawbacks. Sensor noise may contaminate the measurements
sufficiently to degrade plant knowledge. Experimental identification of nonlinear
systems might give response information accurate only for specific inputs. Indeed, a
plant may be ill-suited for this approach, as its operating conditions might preclude
the experiment, or it may lack stability without feedback control.

2.1 Mathematical preliminaries

A system with one input and one output is called single-input, single-output (SISO).
SITO, TISO and MIMO are acronyms for single-input, two-output; two-input,
single-output; and multiple-input, multiple-output systems, respectively. A linear
system satisfies the superposition principle (given system operator G(�),
G(a1u1 þ a2u2) ¼ a1G(u1) þ a2G(u2) for inputs u1, u2 and scalars a1, a2). A system
is time invariant if the output does not explicitly depend on time (i.e. input u(t)
produces output y(t), then shifted input u(t – t) produces y(t – t)). A system that
satisfies both the linearity and time invariant conditions is linear, time invariant
or LTI. A system is causal if for any two signals u1(t) ¼ u2(t), 8t � T, two outputs
y1(t), y2(t) are produced that satisfy y1(t) ¼ y2(t), 8t � T.

The set of real, imaginary and complex numbers are <, F, and C, respectively.
The complex number s [ C is in the open right half plane (ORHP) if Re(s) > 0,
otherwise it is in the closed left half plane (CLHP). The open left half plane
(OLHP) and closed right half plane (CRHP) are defined similarly. <þ and <– are
the sets of positive and negative real numbers, respectively. The set of integers,
positive integers (counting numbers), negative integers and nonnegative integers
are Z, Zþ, Z– and Zþ0. For variable s, the set of polynomials in s is F[s] ¼ {p(s) :
p(s) ¼ ansn þ an–1 sn–1 þ . . . þ a1s þ a0, ai [ <, n [ Zþ0}. For p(s) [ F[s], p(s) ¼
ansn þ an–1s

n–1þ . . . þ a1s þ a0, n is the degree of the polynomial, deg(p(s)). An
n�m matrix of polynomials in s is an element of set Fn�m[s].

The set of rational functions is FðsÞ ¼ fPðsÞ : PðsÞ ¼ pðsÞ
qðsÞ ; pðsÞ 2 F½s�;

qðsÞ 2 F½s�g. The relative degree of PðsÞ 2 FðsÞ;PðsÞ ¼ pðsÞ
qðsÞ ; is

degðqðsÞÞ � degðpðsÞÞ. Rational functions with nonnegative relative degrees are
proper; those with positive relative degrees are strictly proper. An n�m matrix of
rational functions in s is an element of Fn�m(s).

Given GðsÞ 2 FðsÞ;GðsÞ ¼ nðsÞ
dðsÞ ; s 2 fs 2 C : GðsÞ ¼ 0g is a zero of G(s) and

s [ {s [ C : G(s) ? ?} is a pole of G(s). Repeated roots of n(s) and d(s) must be
counted as individual zeros and poles, respectively. The definitions of poles and zeros
of elements of Fn�m(s) are more complicated. Zeros of individual rational function
elements are not generally zeros of the matrix P(s) [ Fn�m(s) (there are several dif-
ferent types of multivariable zeros), and while the pole locations for P(s) in the com-
plex plane can be determined by finding the poles of the individual rational function
elements, their multiplicity may be difficult to determine. The Smith-McMillan
transformation [39] is useful in finding multivariable zeros and pole multiplicity.
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Logarithmic gain is typically reported in decibels (20 log10(x) dB). For exam-
ple, a gain of 2 is 20 log10(2) ¼ 6 dB. A gain of 0.1 is 20 log10(0.1) ¼ �20 dB.
Frequency intervals are either base 2 logarithmic, octaves (oct), or base 10 loga-
rithmic, decades (dec).

2.2 Plant modeling in the frequency domain

Plant models may have either time or frequency as the independent variable. So-
called modern control tends to emphasize time-domain models, whereas classical
or Bode-type control usually uses frequency-domain models. Time-domain mod-
eling is described in the sequel; however, the majority of the material in this book is
focused on the frequency domain. The reason for this is rooted in the ability to
quickly assess relative stability and performance when designing in the frequency
domain. Although automatic control designs prevalent in modern control (e.g.
linear quadratic Gaussian) lend themselves well to computer programming, it can
be difficult to quantify performance and relative stability. Manual methods, like
those discussed in subsequent chapters in this book, are not well suited for com-
puter programming and require substantial insight on the part of the control
designer. However, the information at a glance obtained from frequency domain
plots usually more than makes up for this.

2.2.1 Laplace transform
The one-sided Laplace transform is

L½ f ðtÞ� ¼ FðsÞ ¼
ð1

0�
f ðtÞe�stdt ð2:1Þ

where s ¼ s þ jw is the Laplace variable. Given the Laplace transform F(s), the
function f (t) can be found using the inverse Laplace transform:

L�1½FðsÞ� ¼ 1
2pj

ðsþj1

s�j1
FðsÞestds ð2:2Þ

¼ f ðtÞ1þðtÞ ð2:3Þ

where 1þ(t) is the unit step function (equal to 1 for t� 0, equal to 0 if t< 0). Table 2.1
lists properties of the Laplace transform.

Typically inverse Laplace transforms are found by decomposing the rational
function F(s) using partial fraction expansion. Common Laplace transforms and
their inverses are shown in Table 2.2.

Plant descriptions 9



2.2.2 Transfer function/transfer matrix
Consider the nth order, LTI differential equation for a SISO LTI system with zero
initial conditions.

an
dnyðtÞ

dtn
þ an�1

dn�1yðtÞ
dtn�1

þ � � � þ a1
dyðtÞ

dt
þ a0yðtÞ

¼ bm
dmuðtÞ

dtm
þ bm�1

dm�1uðtÞ
dtm�1

þ � � � þ b1
duðtÞ

dt
þ b0uðtÞ ð2:4Þ

where u(t) is the input to the system and y(t) is the output.
The Laplace transform of this differential equation is straightforward using the

derivative property.

ansnY ðsÞ þ an�1sn�1Y ðsÞ þ � � � þ a1sYðsÞ þ a0Y ðsÞ

¼ bmsmUðsÞ þ bm�1sm�1UðsÞ þ � � � þ b1sUðsÞ þ b0UðsÞ ð2:5Þ

Table 2.1 Properties of the Laplace transform

Time domain Laplace domain

Linearity af(t) þ bf(t) aF(s) þ bF (s)

Time differentiation dnf ðtÞ
dtn snFðsÞ � sn�1f ð0Þ � sn�2f 0ð0Þ � � � � � f ðn�1Þð0Þ

Frequency
differentiation

tnf(t) ð�1Þn FnðsÞ
dsn

Integration
Ð t

0 f ðtÞdt 1
s FðsÞ

Scaling f(at), a > 0 1
a F s

a

� �
Frequency shifting eatf(t) F(s � a)

Time shifting f(t � a)1þ(t � a) e�asF(s)

Convolution ( f * g)(t) F(s)G(s)

Table 2.2 Common Laplace transforms and their inverses

Function f(t) F(s)
Unit impulse d(t) 1
Unit step 1þ(t) 1

s

Unit ramp t1þ(t) 1
s2

Delayed unit step 1þ(t � t ) e�ts

s

Exponential eat1þ(t) 1
sþa

Sine sin(wt)1þ(t) w
s2þw2

Cosine cos(wt)1þ(t) s
s2þw2

Damped sine e�at sin(wt)1þ(t) w
ðsþaÞ2þw2

Damped cosine e�at cos(wt)1þ(t) s�a
ðsþaÞ2þw2
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where Y(s) and U(s) are the Laplace transforms of the output and input signals,
respectively. The transfer function of the system, G(s) [ F(s), is the ratio of Laplace
transforms of the output and input:

GðsÞ ¼ bmsm þ bm�1sm�1 þ � � � þ b1s þ b0

ansn þ an�1sn�1 þ � � � þ a1s þ a0
ð2:6Þ

Given the system impulse response function, g(t), the output is this function con-
volved with the unit impulse function, yðtÞ ¼ Ð t

0 gðt � tÞdðtÞdt. From the con-
volution property of the Laplace transform (Table 2.1), the Laplace transform of the
output is L(y(t)) ¼ G(s)L(d(t)), where G(s) is the Laplace transform of the impulse
response. Recall the Laplace transform of the unit impulse function is unity, so
L(y(t)) ¼ G(s).

For a MIMO LTI system with zero initial conditions, the Laplace transforms of
inputs uj(t), j ¼ 1, 2, . . . , m, are mapped to the Laplace transforms of outputs yi(t),
i ¼ 1, 2, . . . , n through the G(s) [ Fn�m(s) transfer matrix. Element gij(s) [ F(s) is
the Laplace transform of the ith output to the unit impulse at the jth input.

2.2.3 Frequency response
Given transfer function G(s), the frequency response of the system is the complex
function G(jw) ¼ |G(w)|ejf(w) ¼ a(w) þ jb(w), w > 0, where w is the radian
frequency. The modulus, |G(w)|¼ |a(w) þ jb(w)|, and argument, fðwÞ ¼
tan�1 bðwÞ

aðwÞ

� �
, are often plotted against log frequency in either Hz or rad/s. The log

modulus (the logarithmic gain) is typically plotted in decibels (20 log10|G(w)|) and
the argument is plotted linearly. The combination of these plots is called the Bode
plot. Analysis using the Laplace transform is called frequency domain analysis.

A logarithmic gain approximation of the Bode plot is easily established.
Consider an LTI system with transfer function GðsÞ ¼ 1

tsþ1, which has one pole and
no finite zeros. The logarithmic gain is

20 log10jGðwÞj ¼ 20 log10
1

t2w2 þ 1

� �1
2

¼ �10 log10ðt2w2 þ 1Þ ð2:7Þ
At w � 1

t (frequencies much lower than the pole frequency), t2w2 þ 1 	 1 and
the logarithmic gain is approximately 0 dB. At w 
 1

t, t2w2 þ 1 	 t2w2, and
20 log10|G(w)| 	 �20 log10(tw). At these frequencies, the logarithmic gain is
decreasing. To determine the slope, consider the difference in gain over a decade,
w2 ¼ 10w1.

20 log10ðtw1Þ � 20 log10ðtw2Þ ¼ �20 log10
tw1

tw2

¼ �20 log10
w1

10w1

¼ 20
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The logarithmic gain drops 20 dB over a decade, or the slope is �20 dB/dec.
It is clear that for each additional pole, the slope is decreased by �20 dB/dec, and
that each zero increases the slope by 20 dB/dec. Over an octave (i.e. w2 ¼ 2w1),
each pole reduces the slope by �6 dB/oct (each zero increases the slope by
6 dB/oct). At high frequencies (much higher than the frequencies of the poles and
zeros), the logarithmic gain slope can be approximated by the relative degree of
the transfer function. For example, a system with a transfer function with five poles
and two zeros will have a logarithmic slope at high frequency of �18 dB/oct
(relative degree 3), and a system with a transfer function with one pole and
two zeros will have a logarithmic slope at high frequency of 6 dB/oct (relative
degree �1).

An approximation of the phase is also easily found. Consider a system with
transfer function GðsÞ ¼ a

sþa. The frequency response is GðjwÞ ¼ a
jwþa for w [ <þ0,

and the phase is fðwÞ ¼ tan�1ð�w
a Þ. Consider three frequencies referenced to

the pole frequency spread across four decades w ¼ 0.01a, 0.1a, a, 10a, 100a. At
w ¼ 0.01a, f(w) ¼ tan�1(�0.01) ¼ �0.01 rad. At w ¼ 0.1a, f(w) ¼ tan�1

(�0.1) ¼ �0.0997 rad. At w ¼ a, fðwÞ ¼ tan�1ð�1Þ ¼ � p
4 rad. At w ¼ 10a,

f(w) ¼ tan�1(�10) ¼ �1.471 rad. Finally, at w ¼ 100a, f(w) ¼ tan�1(�100) ¼
�1.561 rad. From this, it is evident that the phase can be approximated as flat at
0 degrees from 0 to one decade below the pole frequency. In the two decades from
0.1a to 10a, the phase drops approximately p

2 radians. At higher frequencies, the
phase is approximately � p

2 radians. It is clear that two poles generate �p radians at
high frequency and a zero p

2 radians. Much like the case of determining logarithmic
gain slope at high frequency, the relative degree of the transfer function allows an
expeditious approximation of the phase at high frequency. For example, a system
with a transfer function with five poles and two zeros will have a phase at high
frequency of �270 degrees (relative degree 3), and a system with a transfer function
with one pole and two zeros will have a phase at high frequency of 90 degrees
(relative degree �1).

The approximations of gain and phase of the frequency response become
inaccurate for systems with very light damping. For instance, the Bode plot gain
approximation of GðsÞ ¼ 1000

s2þsþ100 would consist of a gain plot flat at 20 dB to the
pole frequency of 10 rad/s, then rolling off at �40 dB/dec. The phase approximation
would be flat to 1 rad/s, then drops �180 degrees over two decades to 100 rad/s.
However, |G(j10)| ¼ 40 dB; the approximation is off by a factor of 10 at the pole
frequency. In addition, approximately 172 degrees of the 180 phase delay occurs in a
two octave interval centered at the pole frequency. This is much sharper than the two
decades of the approximation. For lightly damped systems, the Bode plot approx-
imation must be augmented by calculations of gain and phase at a few points in the
close neighborhood of the pole (or zero) frequency.

Care must be taken when approximating the phase at low frequency, for the
existence of right half plane (RHP) poles and zeros profoundly effects the phase
there.
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2.2.4 Nonminimum phase system
An LTI system is minimum phase (MP) if it and its inverse are stable and causal.
An LTI system described by G(s) [ F(s) is stable if all the poles have negative real
parts (i.e. in the OLHP). This is discussed in Chapter 5. A system that does not
satisfy the minimum phase condition is nonminimum phase (NMP). Limitations
caused by nonminimum phase are discussed in later chapters.

2.2.5 Bode phase/gain relationship
The Bode formula provides the relationship of phase and gain for a minimum phase
transfer function G(s) [ F(s). The phase shift at frequency w0 is

fðw0Þ ¼ 1
p

ð1
�1

dG

du
ln coth

juj
2

� �
du ð2:8Þ

where u ¼ lnð ww0
Þ and G(w) is the modulus of the frequency response of G(s). In

approximating the phase associated constant magnitude slopes, it is useful to note
that

Ð1
�1 lnðcoth juj

2 Þdu 	 4:93. Consider a slope of �6 dB/oct, dG
du ¼ � logð2Þ

logð2Þ ¼ �1
and from (2.9), fðw0Þ 	 ð�1Þð4:93Þ

p ¼ �1:57 ’ � p
2 rad. For a �12 dB/oct slope, the

phase is �3.14 which is approximately �p rad.
It is evident from the Bode phase/gain relationship that phase shift at any

frequency depends on the magnitude at all frequencies. Consider a low-pass fre-
quency response with magnitude 1 (0 dB) to a corner frequency of 1 rad/s. The
modulus slope is �6 dB/oct after the corner frequency. The goal is to determine the
phase at frequencies much less than the corner frequency (w � 1). The modulus
slope dG

du ¼ �1 at the corner frequency of 1, so the lower limit of the Bode equation
is u ¼ lnð 1

w0
Þ ¼ �lnðw0Þ. Note u ¼ lnð ww0

Þ ¼ lnðwÞ � lnðw0Þ, so du ¼ dlnðwÞ ¼ dw
w .

Utilizing the identity

ln coth
juj
2

� �
¼ ln

1 þ w0
w

1 � w0
w

����
���� ð2:9Þ

the Bode equation can be expressed as follows:

fðw0Þ ¼ � 1
p

ð1
1

ln
1 þ w0

w

1 � w0
w

����
���� dw
w

ð2:10Þ

¼ � 1
p

ð1
1

ln 1 þ w0

w

��� ���� ln 1 � w0

w

��� ���� � dw
w

ð2:11Þ

If w0 � 1, the integrand is approximately j 2w0
w j and the phase is approximately

fðw0Þ 	 � 2
p
w0

ð1
1

dw
w2

¼ � 2
p
w0 ð2:12Þ

For a modulus slope of �6n dB/oct (n [ Zþ), the phase at frequencies much below
the corner frequency is approximately � 2

p nw0.
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2.2.6 Nonminimum phase lag
Phase lag that is in excess of what is found using the Bode formula is nonminimum
phase lag. RHP zeros in the transfer function generate nonminimum phase (transfer
function inverse is unstable). In the time domain, such systems exhibit inverse
response, where the initial response to the input is in the opposite direction of the
final value.

Example: RHP zeros
An LTI system has transfer function GðsÞ ¼ s�10

s2þ200sþ10;000. There is one finite zero
and two poles. Using the approximation of the Bode formula, the phase at very low
frequency (w0 � 10rad=s) is approximately � 2

p w0. However, the RHP zero gen-
erates 180 degrees of phase at w0 ¼ 0. This is evident in the Bode plot of this
system, shown in Figure 2.1. This is in contrast to the phase caused by a zero in the
LHP at DC, which is 0 degrees. Figure 2.2 shows the step response of this system.
Note the initial response is in the opposite direction of the final value.

It is interesting to note the phase contribution of RHP zeros at different fre-
quencies. As seen in this example, the RHP zero contributes 180 degrees at w ¼ 0
in contrast to 0 degrees caused by the LHP zero. As w??, both the LHP and RHP
zeros contribute 90 degrees of phase. At very high frequencies relative to the zero
frequency, the LHP and RHP zeros are indistinguishable from the perspective of
phase. It is the phase delay of the RHP zero in the neighborhood of its frequency
(transition from 180 to 90 degrees of phase contribution) that typically is most critical.
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Figure 2.1 Bode plot of a nonminimum phase system
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Transport lag e�std in the loop also generates nonminimum phase delay
(inverse is not causal). For a time delay of td, the NMP phase delay at frequency w
is fdelay ¼ wtd. For a sampled system that waits until the end of the sample to
output, 1

td
¼ fs is the sample rate in Hz. At the sample frequency, the time delay

causes 2p radians of nonminimum phase delay. At one-tenth the sample rate, the
NMP delay is 36 degrees.

Example: Time delay
The phase of the nominal system with transfer function GðsÞ ¼ 100

s2þ20sþ100 is com-
pared to the same system with a 0.01 s time delay in Figure 2.3. The minimum
phase transfer function has a relative degree of 2 (two poles and zero finite zeros),
and thus the phase will approach �180 degrees at frequencies much higher than the
pole frequencies. This is seen in the solid line function. The dotted line function is
the phase of the delayed system. Note that at w ¼ 2p

0:01, the excess delay is 2p. It
should be noted that the plot is logarithmic and wrapped, not graphically indicating
the linear relationship between time and NMP delays.

Subsequent discussions will illustrate that NMP has deleterious effects for
feedback controllers. NMP feedback systems have inferior sensitivity to those that
are minimum phase. Increased delay threatens stability, both in a relative and
absolute sense, so there is an upper bound of acceptable NMP delay. In the case of
time delay, this presents an upper bound on frequencies in which the controller can
operate, which has a direct effect on the performance of the feedback system.
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In the linear feedback controller design chapter, the Bode formula and quan-
tification of NMP delay at a critical frequency will be implemented to develop a
compensator shape that combines performance and robustness.

2.3 Plant modeling in the time domain

Thus far, we described linear system dynamics using the Laplace transform. Often,
it is convenient to use a time-domain description. All design methods described in
this book use frequency-domain representations of system dynamics and require a
transformation from time-domain representations.

Definition: State
A set of variables that along with, the input functions and the equations describing
the dynamics provide the future state and output of the system.

The state space realization of an n-state, LTI system with m-inputs u(t) [ <m

and l-output y [ <l is the matrix quadruple (A, B, C, D), where A [ <n� n, B [ <n�m

C[ <l� n and D [ <l�m are the state, input shaping, output shaping and input feed
through matrices, respectively. The state differential and output equations are as
follows:

_xðtÞ ¼ AxðtÞ þ BuðtÞ ð2:13Þ
yðtÞ ¼ CxðtÞ þ DuðtÞ ð2:14Þ

Consider a mass-spring-damper system with force applied in parallel to the
spring as the input (u) and the position of the mass as the output (y). The differential
equation for this second-order system is
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Figure 2.3 A comparison of nominal (solid line) and time-delayed (dotted line)
phase plots
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M
d2y

dt2
þ D

dy

dt
þ Ky ¼ u ð2:15Þ

where M, D and K are the mass, damping rate and spring stiffness, respectively. The
first state, x1, is chosen to be the mass position relative to the relaxed position. The
state equations follow:

x1ðtÞ ¼ yðtÞ ð2:16Þ

_x1ðtÞ ¼ x2ðtÞ ð2:17Þ

¼ dyðtÞ
dt

ð2:18Þ

_x2ðtÞ ¼ €x1ðtÞ ð2:19Þ

¼ d2yðtÞ
dt2

ð2:20Þ

Express as a state differential equation.

_x1

_x2

	 

¼ a11 a12

a21 a22

	 

x1

x2

	 

þ b1

b2

	 

u ð2:21Þ

¼ 0 1
�K

M �D
M

	 

x1

x2

	 

þ 0

1
M

	 

u ð2:22Þ

The input is the force applied to the mass u ¼ f. The position of the mass is the

output y ¼ ½ 1 0 �
h x1

x2

i
.

It is noted that while transfer function models of LTI systems (assuming the
polynomials are coprime) are unique, state space models are not. In addition to an
arbitrary order of selected states, the state matrix may be of greater dimension than
the order of the system, and the state space realization is referred to as not minimal.
This is discussed in more detail in Chapter 5.

2.3.1 Solution of the state differential equation
The solution of the state differential equation is now found. Consider first the zero
input state differential equation.

_xðtÞ ¼ AxðtÞ ð2:23Þ

xðtÞ ¼ eAtxð0Þ ð2:24Þ

eAt ¼ I þ At þ A2t2

2!
þ A3t3

3!
þ � � � þ Aktk

k!
þ � � � ð2:25Þ
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Take the derivative.

d

dt
eAt ¼ A þ A2t þ A3t2

2!
þ � � � þ Aktk�1

ðk � 1Þ!þ � � � ð2:26Þ

¼ A I þ At þ A2t2

2!
þ A3t3

3!
þ � � � þ Aktk

k!
þ � � �

� �
ð2:27Þ

¼ AeAt ð2:28Þ
¼ eAtA ð2:29Þ

If x ¼ eAtx(0), then _x ¼ d
dt eAtxð0Þ ¼ AeAtxð0Þ ¼ Ax. So x ¼ eAtx(0) is a solution to

the state differential equation.
Consider the LTI system driven by input u.

_x ¼ Ax þ Bu ð2:30Þ
Premultiply by e�At and note d

dt e�Atx ¼ e�At _x � e�AtAx.

e�At _x ¼ e�AtAx þ e�AtBu ð2:31Þ

e�At _x � e�AtAx ¼ e�AtBu ð2:32Þ
d

dt
e�Atx ¼ e�AtBu ð2:33Þ

Integrate both sides of this equation.
ðt

0
de�AtxðtÞ ¼

ðt

0
e�AtBuðtÞdt ð2:34Þ

e�AtxðtÞ � e�Að0Þxð0Þ ¼
ðt

0
e�AtBuðtÞdt ð2:35Þ

xðtÞ ¼ eAtxð0Þ þ eAt
ðt

0
e�AtBuðtÞdt ð2:36Þ

¼ eAtxð0Þ þ
ðt

0
eAðt�tÞBuðtÞdt ð2:37Þ

Now express the output equation as a function of the state transition matrix, eAt.

yðtÞ ¼ CxðtÞ þ DuðtÞ ð2:38Þ

¼ CeAtxð0Þ þ C

ðt

0
eAðt�tÞBuðtÞdtþ DuðtÞ ð2:39Þ

Example. The zero input response of an LTI system is desired. The state matrix is
A ¼ [�3 1;1 �6] and the output shaping matrix is C ¼ [1 1]. The initial state is
x0 ¼ [1;0].

The solution of the state differential equation is presented in Figures 2.4 and 2.5.
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2.3.2 Controllability and observability
For a state-space realization (A, B, C, D), the matrix pair (A, B) is controllable
if for any initial state x0 and any final state x1, there exists an input that transfers x0

to x1 in finite time. It can be shown that this is equivalent to matrix
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Figure 2.4 A solution of the state differential equation
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Ð t
0 eAðt�tÞBBT eAT ðt�tÞdt being nonsingular for any t > 0, or the controllability matrix

C ¼ ½B AB A2B . . . An�1B � is full row rank. The eigenvalues (real and
conjugate pairs) of a controllable system can be placed in arbitrary locations in the
complex plane with the appropriate control input.

For a state space realization (A, B, C, D), the matrix pair (A, C) is observable if
for any unknown initial state x0, there exists a finite time t1 > 0 such that the
knowledge of the input and the output over the time interval [0, t1] suffices to
determine uniquely the initial state. It can be shown that this is equivalent to matrixÐ t

0 eAðt�tÞCT CeAT ðt�tÞdt being nonsingular for any t > 0, or the observability matrix
O ¼ ½CT AT CT ðA2ÞT CT . . . ðAn�1ÞT CT �T is full column rank. The states of
an observable system can be estimated with the output, input and the state space
model of the system.

State space descriptions of linear systems are not unique. It is possible that
the dimension of state matrix A is greater than the smallest possible, and the
eigenvalues of A are not poles of the transfer function. This state space realization
is nonminimal and possibly has hidden unstable modes.

2.3.3 Minimal state space realizations
Definition: Minimal state space realization
A state space realization (A, B, C, D) is minimal if A is the smallest possible
dimension.

For a minimal state space realization, all eigenvalues of A are poles of the
transfer matrix G(s). A state space realization (A, B, C, D) is minimal if and only if
(A, B) is controllable and (A, C) is observable (see Reference 3).

2.3.4 Diagonalizing the state matrix
A transform is introduced to diagonalize the n� n state matrix, A, in (2.14). The
independent variable is dropped.

x ¼ Mq ð2:40Þ
_x ¼ M _q ¼ AMq þ Bu ð2:41Þ
y ¼ CMq þ Du ð2:42Þ

Premultiply by the inverse of transformation matrix M.

_q ¼ M�1AMq þ M�1Bu ð2:43Þ

To decouple the states, M�1AM ¼ L must be diagonal. Elements li, i ¼ 1, 2, . . . , n,
along the diagonal of L are the eigenvalues of A. Columns of M (referred to as the
modal or eigenvector matrix) xi, i ¼ 1, 2, . . . , n, are the eigenvectors of A. The
relationship between the ith eigenvalue and eigenvector is
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Axi ¼ lixi ð2:44Þ
ðA � liIÞxi ¼ 0 ð2:45Þ

This has a nontrivial solution for xi if and only if det(A � lI) ¼ 0. If the roots of
this determinant are distinct, the n� eigenvectors can be found. If the nullity of
A � liI is equal to the multiplicity of the ith eigenvalue, independent eigenvectors
can be found for these eigenvalues. If the nullity is less than the eigenvalue mul-
tiplicity, diagonalization of the state matrix is not possible; however, a block
diagonal form is possible using the Jordan transformation (see Reference 3).

The diagonalization of the state matrix A allows the expeditious analysis of the
natural response of the system. Indeed, for minimal state space realizations, the
eigenvalues of the state matrix are the poles of the transfer function.

2.3.5 Transfer function from the state equation
Consider a strictly proper SISO LTI system with state equation (2.14) (y(t) and u(t)
are scalar functions, D is the zero matrix). We take the Laplace transform of the
state equation.

sX ðsÞ ¼ AX ðsÞ þ BUðsÞ ð2:46Þ

ðsI � AÞX ðsÞ ¼ BUðsÞ ð2:47Þ

X ðsÞ ¼ ðsI � AÞ�1BUðsÞ ð2:48Þ

Y ðsÞ ¼ CðsI � AÞ�1BUðsÞ ð2:49Þ

The transfer function is the ratio of Laplace transforms of the output and input,
GðsÞ ¼ Y ðsÞ

UðsÞ ¼ CðsI � AÞ�1BUðsÞ. As ðsI � AÞ�1 ¼ 1
detðsI�AÞ AdjðsI � AÞ where

Adj(�) is the adjoint matrix, the roots of det(sI � A) are in the denominator of
elements of G(s). These are the eigenvalues of A. Depending on common roots,
these may or may not also be poles of the system.

Example

_~x ¼ 1 4
7 10

	 

~x þ 0

1

	 

u ð2:50Þ

y ¼ ½ 1 1 �!~x ð2:51Þ

GðsÞ ¼ Y ðsÞ
UðsÞ ð2:52Þ
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¼ CðsI � AÞ�1B ð2:53Þ

¼ ½ 1 1 � s � 1 �4
�7 s � 10

	 
�1
0
1

	 

ð2:54Þ

¼ ½ 1 1 �
s � 10

s2 � 11s � 18
4

s2 � 11s � 18
7

s2 � 11s � 18
s � 1

s2 � 11s � 18

2
64

3
75
�1

0
1

	 

ð2:55Þ

¼ 4
s2 � 11s � 18

þ s � 1
s2 � 11s � 18

ð2:56Þ

¼ s þ 3
s2 � 11s � 18

ð2:57Þ

Note C ¼ 0 4
1 10

	 

and O ¼ 1 1

8 14

	 

are both rank 2 (the state space realization is

minimal). The eigenvalues are the solution of |lI � A| ¼ 0 or l2 � 11l � 18 ¼ 0,

which are the poles of G(s).

2.4 Linearization

Linear control theory obviously applies to linear plants, and unfortunately most
real-world systems do not satisfy the superposition condition. The dynamics of
these systems can be approximated in the closed neighborhood of selected oper-
ating points. Consider a nonlinear system description y(t)¼ g(x(t)). The Taylor
expansion about operating point x0 is

gðxÞ ¼ gðx0Þ þ dg

dx

���
x¼x0

ðx � x0Þ þ d2g

dx2

���
x¼x0

ðx � x0Þ2

2!
þ � � � ð2:58Þ

If the increment h ¼ |x � x0| is sufficiently small, the terms of order higher than 1
in the Taylor expansion are small in comparison to the first two terms, and the
dynamics may be approximated as

gðxÞ ¼ gðx0Þ þ dg

dxx¼x0

ðx � x0Þ ð2:59Þ

The second term is simply the product of slope ðdg
dxjx¼x0

Þ and run (x � x0). Consider a
two-state, nonlinear system x_1 ¼ g1ðx1; x2Þ; x_2 ¼ g2ðx1; x2Þ, where f1 and f2 are
continuously differentiable. Point x1 ¼ p1, x2 ¼ p2 is an equilibrium point (i.e.
x_1 ¼ x_2 ¼ 0). The Taylor expansion about this point is

_x1 ¼ g1ðp1; p2Þ þ a11ðx2 � p1Þ þ a12ðx2 � p2Þ þ HOT ð2:60Þ
_x2 ¼ g2ðp1; p2Þ þ a21ðx1 � p1Þ þ a22ðx2 � p2Þ þ HOT ð2:61Þ
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where aij ¼ dgi

dxj
, and HOT (high-order terms) are terms in the expansion of order

higher than unity. The state trajectories in the neighborhood of (p1, p2) are x1 ¼
x1 � p1 and x2 ¼ x2 � p2. If jj½ x1 x2 �T jj is sufficiently small, then the trajectories
are approximated by

_x1

_x2

	 

¼ a11 a12

a21 a22

	 

x1

x2

	 

¼ Ax ð2:62Þ

The matrix first derivative, A, is called the Jacobian matrix.

Example: Linearization
Consider a nonlinear system with state equations x_1 ¼ �x2; x_2 ¼ 3sinðx1Þ þ x2

2 þ 3u.
The input is u and the output is state x1. A transfer function approximating the sys-
tem’s dynamics in the close neighborhood of the equilibrium point (0, 0) is required.
The Jacobian matrix is

0 �1
3 0

	 

ð2:63Þ

So, the linearized state space equation is

_x1

_x2

	 

¼ 0 �1

3 0

	 

x1

x2

	 

þ 0

3

	 

u ¼ Ax þ Bu ð2:64Þ

y ¼ ½ 1 0 � ¼ Cx ð2:65Þ

The transfer function is C½sI � A��1B ¼ �3
s2þ3. Figure 2.6 compares the response of

the actual and approximated system to the input u(t) ¼ 0.01 sin(t).
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Figure 2.6 A comparison of actual (solid line) and approximated (dotted line)
system responses to u(t) ¼ 0.01 sin(t)
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2.5 System identification

Models of dynamic systems can be segregated into three classes. The white box
consists of a model developed using first principles. This type of model is useful for
low-order systems (e.g. mass-spring-damper) but is difficult to develop for com-
plex systems with many parameters. A black box does not use a priori model,
instead uses statistical models to build a system model using measured data. This is
particularly useful when modeling complicated systems with many parameters,
such as those with many flexible-body modes. Developing accurate white box
models of these types of systems can be very difficult. A gray box model consists of
a combination of white and black, incorporating knowledge of the system dynamics
and measured data.

The Fourier analyzer is a very useful tool in the development of black box
models of complex linear systems. These are digital spectrum analyzers that pro-
vide through averaging sampled time responses frequency response functions,
power spectral densities (PSDs), and correlation and coherence functions. These
frequency response measurements can either be curve-fitted to find a rational
function description, or the data can be used directly for loop shaping and stability
analysis. The coherence function indicates the quality of the frequency response. At
frequencies where the coherence is near unity, the response is primarily a result of
the input signal. At frequencies where the coherence is substantially less than unity,
the system may be unresponsive and/or the response may be driven excessively by
sensor noise and the system identification may be insufficient for high-quality
control design.

Example: Black box modeling with a Fourier analyzer
The system to be controlled is a single-axis vibration suppression system con-
sisting of a voice coil actuator in parallel with a helical spring and a laser position
sensor. Performance is important, so the bandwidth must be as high as possible.
As such, a model of the rigid-body mode only is not sufficient for this application,
as any flexible-body modes threaten the stability of an aggressive feedback system.
A white box model of sufficient fidelity is not available, so a black box model is
found using a Fourier analyzer. Figure 2.7 shows the coherence, gain and phase
plots for this system. The coherence is near unity in the decade 100–1000 rad/s
(except at the frequencies of the zeros at 50 and 90 rad/s) and at the pole fre-
quencies in the interval 600–900 rad/s. Confidence in the model at these fre-
quencies is high, and there is little concern if the loop gain is near unity in these
frequency intervals. There is concern if the crossover frequency is in the interval
from 2000 to 5000 rads/s as the coherence is low, and the knowledge of the plant
phase is not very good. The low coherence at beyond 20,000 rad/s is due to the plant
being unresponsive at those frequencies. A control design for this plant will be
discussed in detail in a case study.

24 Frequency-domain control design for high-performance systems



2.6 Exercises

1. The impulse response of an LTI SISO system is g(t) ¼ (15 þ e�3t)1þ. Find
the transfer function G(s) of this system.

2. The step response of an LTI SISO system is gs(t) ¼ (t þ 3t2 þ e5t)1þ. Find
the transfer function G(s) of this system.

3. The impulse response of an LTI SISO system is g(t) ¼ 10(sin(t))1þ. Find the
transfer function G(s) of this system.

4. An LTI SISO system has a transfer function GðsÞ ¼ sþ5
s2þ11sþ10. Find the

response of this system to input 10e�5t.
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Figure 2.7 Experimentally acquired frequency response and coherence functions
for a single-axis vibration suppression system
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5. What is the impulse response of the LTI SISO system GðsÞ ¼ 10
s2þ5sþ100?

6. Sketch an approximation of the Bode plot of GðsÞ ¼ 100
sþ10.

7. Sketch an approximation of the Bode plot of GðsÞ ¼ 1000 sþ5
s2þ15sþ50.

8. Sketch an approximation of the Bode plot of GðsÞ ¼ 1000 sþ1
s2þ1sþ100. Be

sure to augment the approximation in the neighborhood of the lightly damped
poles.

9. Sketch an approximation of the Bode plot of GðsÞ ¼ 1000 s�1
s2þ1sþ100. Is the

system minimum phase? Why or why not?
10. A coprime transfer function has four LHP zeros and one RHP zero. It has six

LHP poles and one RHP pole. What is the slope of the frequency response at
frequencies much higher than the highest frequency pole or zero? What is the
phase?

11. The transfer function has a flat gain to the corner frequency 100 rad/s.
The roll-off is 3rd order (�18 dB/oct). What is the phase (approximately) at
0.1 rad/s?

12. A digital sensor has a 10 ms time delay. How much phase delay is generated
by this at 5 Hz?

13. The plant equation is y2ðtÞ
dt2 þ 10 yðtÞ

dt ¼ 3 uðtÞ
dt . Find a state space equation for this

system. Also find the transfer function for this system.
14. For the previous system, the initial state is xð0Þ ¼ ½ 2 0 �. The input is 0. Plot

the state to 10 s.
15. Explain the conditions for which state space realization (A, B, C, D) is

minimal.
16. A coprime transfer function has six zeros and eight poles. What are the

dimensions of the matrices of the minimal state space realization (A, B, C, D)?
What is D?

17. Find the eigenvalues and eigenvectors of state matrix A ¼ �4 3
1 20

	 

. What

are the poles of the system if the state space realization is minimal?
18. Linearize the system x_1 ¼ x2; x_2 ¼ 3ex1 þ x2

2 about the origin.
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Chapter 3

Feedback

In the world of feedback control, it pays to be negative.

– Anonymous

Consider the block diagram of a single-input, single-output (SISO) feedback sys-
tem shown in Figure 3.1. The plant and feedback compensators are modeled by the
rational functions G(s) and C(s), respectively. Exogenous inputs r(s), d(s) and
n(s) are the reference, disturbance and sensor noise signals, and y(s) is the plant
response. T(s) ¼ C(s)G(s) is the return ratio, sometimes referred to as the open-
loop gain or the loop transmission function. F(s) ¼ 1 þ T(s) is the return differ-
ence and its magnitude |F(s)| ¼ |1 þ T(s)| is the feedback. Although they share the
same name, this function should not be confused with the feedback signal from the
plant output to the compensator input. The response to reference input is
yðsÞ
rðsÞ ¼ CðsÞGðsÞ

1þCðsÞGðsÞ ¼ TðsÞ
FðsÞ. The response to the disturbance is yðsÞ

dðsÞ ¼ GðsÞ
1þCðsÞGðsÞ ¼ GðsÞ

FðsÞ. For
good tracking, it is desired that jTðsÞFðsÞj be as close to the unity as possible. For good
disturbance rejection, it is desired that jGðsÞ

FðsÞj be as small as possible.

G(s)C(s)

Plant

y(s)u(s)

d(s)

Input Output 

e(s)

Error

Compensator

Disturbance

r(s)

Reference
–
+ +

+

+

+
n(s)

Noise

Figure 3.1 A SISO feedback system



3.1 Feedback

Definition: Bandwidth
For a low pass loop transmission and |T(jwb)| ¼ 1, wb is the bandwidth (alter-
natively 0 dB crossover frequency).

Definition: Functional bandwidth
For a low pass loop transmission and |T(jw)| is approximately constant for w < wf,
wf is the functional bandwidth.

Definition: Negative feedback
Feedback is negative at frequencies where |F(s)| > 1. It is noted that many text-
books refer to negative feedback as a result of the negative sign on the reference/
feedback summing junction. While loop phase is critical, there is nothing special
about the sign at this summing junction. For instance, if a �1 block is placed in the
feedback path, then the summing junction could have plus signs at both inputs with
no change to the closed-loop system.

In contrast, the definition of negative feedback introduced here has a sig-
nificant meaning. Note the effect of negative feedback on the response to dis-
turbance function. In the open loop, the Laplace transform of the response of the
plant to an input disturbance is G(s)d(s). In the closed loop, the response is GðsÞ

FðsÞ dðsÞ.
The response of the system to disturbance is reduced (compared to the open-loop
response) over the frequencies where feedback is negative. The term ‘negative’ has
its roots in early feedback amplifier design, where the effect of feedback reduces
the high open-loop gain (negative logarithmic gain).

Definition: Large feedback
Feedback is large at frequencies where |F(s)| � 1. Clearly, it is advantageous to
have large feedback, as the disturbance rejection is good at frequencies where this
is true. As will be shown later, it is not possible to have large feedback at all
frequencies and care must be taken in design to maximize the feedback in fre-
quencies where disturbance rejection is most critical.

Note that at frequencies where there is large feedback, jFðsÞj ¼ j1 þ TðsÞj ’
jTðsÞj. So the loop transmission function modulus is a good approximation of the
feedback where feedback is large. This approximation is used to show that large
feedback improves tracking performance. Over the frequencies where feedback is
large, the ratio of Laplace transforms of the response to the reference input is yðsÞ

rðsÞ ¼
TðsÞ
FðsÞ ’ TðsÞ

TðsÞ ¼ 1, and the output tracks the reference input.
Feedback is the magnitude of the return difference; the phase of this complex

function is ignored. In Chapter 5, it is shown that sufficient phase margins must be
maintained for stability. So, why is it acceptable to consider a real function like
feedback? Phase can (locally) be ignored at frequencies where feedback is large.
For example, consider two systems with large feedback at some frequency w1

where T1( jw1) ¼ 1000 þ j0 and T2( jw1) ¼ �1000 þ j0. Although the phase of the
loop transmission functions differs by 180 degrees, the feedback is nearly identical
(1001 and 999). Now consider two systems at some frequencyw2: T1( jw2) ¼ 1.01þ j0
and T2(jw2) ¼ �1.01 þ j0. The phase again differs by 180 degrees, but note the
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difference in feedback: F1(w2) ¼ 2.01 and F2(w2) ¼ 0.01. Although not large,
the feedback of system 1 at w2 is negative and disturbances will be reduced by
approximately 6 dB at this frequency. The second system will amplify dis-
turbances at w2 by 40 dB! This illustrates how critical the shaping of T(s) is in
the vicinity of the unit circle and provides an introduction to positive feedback.

Definition: Positive feedback
Feedback is positive where |F(s)| < 1. This has the opposite effect on disturbance
rejection as negative feedback, as the response GðsÞ

FðsÞdðsÞ is now of greater magnitude
than the open loop. Clearly, this is not a desirable characteristic. So, why not design
the control system with a goal of having a wide interval of frequencies where the
feedback is negative (preferably large), and no positive feedback? There is a rela-
tionship between positive and negative feedback presented later that precludes this
design approach. As opposed to attempting to eliminate positive feedback, the more
useful approach is to introduce positive feedback carefully at frequencies where
there is low disturbance energy. This is discussed in detail later.

3.2 Sensitivity

The effect of feedback on the sensitivity of the closed-loop system to (small) plant
parameter variations is now investigated. G in the reference-output equation is
treated as a variable to determine this sensitivity.

S ¼ d y
r

dG

G
y
r

ð3:1Þ

The first term in this product is the derivative of the reference-output equation with
respect to variable G.

d y
r

dG
¼ d

dG

CG

1 þ CG

� �
ð3:2Þ

¼ C

1 þ CGð Þ2 ð3:3Þ

The sensitivity is

S ¼ C

ð1 þ CGÞ2

G 1 þ CGð Þ
CG

ð3:4Þ

¼ 1
1 þ CG

ð3:5Þ

¼ 1
1 þ T

ð3:6Þ

It is evident that the closed-loop system is insensitive to plant parameter varia-
tions at frequencies where the feedback is large. It should be noted that the parameter
variations considered here do not include those that significantly change the plant
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characteristics (e.g. the inclusion or extraction of poles and zeros), rather those that
effect small changes in the plant gain. The following definitions are from this result.

Definition: Sensitivity
Sensitivity is the inverse of the feedback, SðsÞ :¼ 1

1þTðsÞ. The plot of the magnitude
of the sensitivity function shows the boundary between positive and negative
feedback for stable loops, the horizontal line indicating 0 dB. Below this line, the
feedback is negative, above it positive.

Definition: Complementary sensitivity
For sensitivity function S(s), the complementary sensitivity function is defined as
M(s) :¼ 1 � S(s). Note MðsÞ ¼ TðsÞ

1þTðsÞ, which is the closed-loop function for unity
feedback, and S(s) þ M(s) ¼ 1.

It is clear that control systems have several desirable characteristics at fre-
quencies where feedback is large: good reference tracking, good disturbance rejec-
tion, and an insensitivity to small parameter variations in the plant. The last
characteristic has a cost benefit. Consider a control application in which actuators
from two different manufacturers satisfy the requirements of the problem
(e.g. sufficient stroke, force, velocity, etc.): the first actuator is precise, expensive and
somewhat fragile; the second actuator is somewhat less precise than the first, but less
expensive and more rugged. What is the effect of the modulus of the frequency
response of the second actuator varying slightly on the closed-loop performance, and
how does this compare to the performance using the first actuator? If the controller is
designed so that feedback is not large, the sensitivity is not small, and the reference
tracking of the controller using the second actuator will be inferior to that using the
first. The engineer is compelled to purchase the more expensive actuator and hopes
that its fragility does not result in failure on deployment. However, if the controller is
designed so that there is large feedback, the system is insensitive to the variations in
the actuator gain, and the tracking performance using the second actuator is com-
parable to that using the first. The engineer may purchase the less expensive actuator
and have greater confidence in system reliability.

If one desires good performance, as much feedback should be applied at cri-
tical frequencies as is feasible. The advantages of control systems that have large
feedback include good tracking performance, good disturbance rejection and the
potential for a lower cost solution to the actuator selection problem. The dis-
advantage is that the design of large feedback controllers is more complicated,
requiring higher-order compensation than commonly used linear controllers
(e.g. proportional-integral-derivative (PID)) and perhaps nonlinear compensation.
This disadvantage, however, costs almost nothing. The increased compensator
order results either in a few more operational amplifiers in the analog case, or a few
more terms in a difference equation in the digital case. On the other hand, a few
decibels of performance improvement may be the difference between the system
performing to required specifications or failing to (military) or dominating the
competition or languishing behind (commercial).

Having established the positive aspects of feedback, practical limitations to the
available quantity are now presented.
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3.3 Bode sensitivity integral

For a system with greater than first-order roll-off and Np open-loop right half plane
(RHP) poles pi, i ¼ 1, 2, . . . Np, the sensitivity of the closed-loop system satisfies
the following (see Appendix A):

p
XNp

i¼1

Re½pi� ¼
ð1

0
logjSðjwÞjdw ð3:7Þ

This relationship gives great insight into the limitations of control performance for
systems with greater than first-order roll-off. It is noted that for low-pass loop
transmission functions that roll off at first order have no positive feedback (the
T-plane plot lies in the first and fourth quadrants). For stable systems (open-loop)
with greater than first-order roll-off (quite typical for actual systems where the
response drops sharply at high frequency), the integral of log sensitivity with
positive feedback is equal to that of negative feedback. As negative feedback is
increased over some intervals of frequencies, positive feedback is increased at other
frequencies. From a design perspective, the compensator must be designed so that
there is small disturbance power at frequencies where there is positive feedback. It
is evident from (3.7) that unstable systems will have more positive feedback (from
an log integral perspective) than negative feedback, and this difference is propor-
tional to how far into the RHP these poles are. This lost performance is expended in
stabilizing the unstable open-loop system.

3.4 Bandwidth limitations

Clearly, large feedback F has many advantages. The loop transmission function T(s) is
typically low-pass or bandpass, so increasing the crossover frequency wc (simulta-
neously reducing the first crossover frequency for bandpass T(s)) increases feedback.
Unfortunately, arbitrarily high crossover frequencies are not possible. Some causes of
bandwidth limitation follow.

3.4.1 Sensor noise
The block diagram in Figure 3.2 shows a feedback system with a linear block H(s)
in the feedback path and an exogenous input added to the sensor signal, n(s). The
frequency response of H indicates at what frequencies the sensor is responsive, and
n is the sensor noise signal. The loop transmission of this system is T(s) ¼ G(s)C(s)
H(s). The response of the closed-loop system to the sensor noise is as follows:

yðsÞ ¼ �GðsÞCðsÞHðsÞ
1 þ GðsÞCðsÞHðsÞ nðsÞ ð3:8Þ

¼ �TðsÞ
1 þ TðsÞ nðsÞ ð3:9Þ
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At frequencies where feedback is large, y(s) ^� n(s) with no other exogenous
inputs. The system tracks the sensor noise, a very bad characteristic.

The sensitivity of the system to variations in H is the following:

SHðsÞ ¼ GðsÞCðsÞHðsÞ
1 þ GðsÞCðsÞHðsÞ ð3:10Þ

¼ TðsÞ
1 þ TðsÞ ð3:11Þ

At frequencies where the feedback is large, the system sensitivity to sensor varia-
tions is nearly 1, affecting the reference tracking directly. These two results com-
prise a compelling feature of the sensor in comparison with the actuator. Large
feedback makes the system insensitive to small variations in the actuator, yet makes
the system respond 1-to-1 to sensor parameter variations. Large feedback attenu-
ates plant disturbances, yet passes sensor noise directly to the output. So while good
control design (large feedback) allows some flexibility in actuator selection, the
sensor used in these closed-loop systems must be high quality (invariant H and low
noise power in the desired bandwidth).

3.4.2 Actuator limits
All actuators when driven to their physical limits response present a feedback
limitation. Actuators typically have a limited frequency response, beyond which the
output drops off. This is modeled as a low-pass filter in the forward path of the
control loop, the phase lag of which must be considered in the loop shaping for
adequate margins of stability.

Actuators driven beyond their amplitude limits introduce a saturation nonlinearity
in the forward path. The presence of this saturation can cause instability, especially
when the control design is aggressive. This is discussed in detail in Chapter 7.

3.4.3 Plant limits – poles
Many plants have dynamics that limit available bandwidth. Consider two linear,
minimum phase SISO plants with frequency responses shown in Figures 3.3 and
3.4. It will be shown in Chapter 5 that at frequency wb where |T(jwb)| ¼ 1, the loop
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Figure 3.2 A feedback system with sensor signal added
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transmission phase angle arg(T(jwb)) must be greater than �180 degrees. The two
plants are analyzed with this constraint in mind. The first plant has only a real pole
at 1 rad/s, followed by a conjugate pair of zeros at 10 rad/s and a conjugate pair of
poles at 20 rad/s. The dynamics of this system do not alone restrict bandwidth.
Indeed, the compensator could be nothing more than a constant, and the phase and
gain stability margins are bounded above by �90 degrees and infinity, respectively.
Of course, this is only feasible in the unlikely condition that there are no other
limits to feedback present. The second plant breaks at the same frequency as the
first but has lightly damped conjugate adjacent pairs of poles at higher frequencies.
Consider the phase of this system’s frequency response. The first zeros and poles
occur in alternating pairs. This provides 180 degrees of phase advance in the fre-
quency intervals between the zeros and poles. These do not present a problem in
this case as the phase advances from �90 degrees (due to the real pole) to 90
degrees over the frequency interval between the zeros and poles and the Nyquist
locus (discussed in Chapter 5) does not cross the negative real axis.

The situation changes at higher frequency where there are two adjacent
conjugate pole pairs. The phase drops 180 degrees at each of these pole
frequencies, clearly making the application of negative feedback at these
frequencies a risky venture. Misguided attempts at pole-zero cancelation can have
dire consequences indeed. Consider the following compensator design for the
second plant. The bandwidth of the regulator is to be 200 rad/s.

C1ðsÞ ¼
k1 s2 þ 0:1s þ 402
� �

s2 þ s þ 1602
� �

s2 þ 10;000s þ 10;0002
� �

s2 þ 10;000s þ 20;0002
� � ð3:12Þ

The zeros of C1 cancel the plant poles at 40 and 160 rad/s perfectly, and k1 is
selected so that the 0-dB crossover is 200 rad/s. The poles at very high frequency
make proper the compensator transfer function. The loop transmission of Figure 3.5
shows a final 0-dB crossover of 200 rad/s. The response of this system to a random
disturbance added at the plant input is shown in Figure 3.6.

A problem arises when the plant is not known perfectly, which is a very
common problem with such resonant systems. To allow for some uncertainty in the
target poles, the zeros are a bit wider.

C2ðsÞ ¼
k2 s2 þ 5s þ 402
� �

s2 þ 5s þ 1652
� �

s2 þ 10;000s þ 10; 0002
� �

s2 þ 10;000s þ 20; 0002
� � ð3:13Þ

However, even small errors in the frequency of the second pole (165 rad/s
versus 160 rad/s) result in instability, as seen in the Bode plot shown in Figure 3.7,
and the closed-loop response to disturbance in Figure 3.8.

3.4.4 Plant limits – zeros
Consider two-loop transmission functions shown in Figure 3.9. Note that the
moduli are identical, but the arguments differ. The first system has a zero at s ¼ �5,
whereas the second has a zero at s ¼ 5. Both systems have repeated poles
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at s ¼ �50. The system with the zero in the RHP is nonminimum phase, as the
system’s phase lag is in excess of what is found using the Bode phase/gain
relationship.

RHP zeros can have negative impact on feedback controller. While the two
example systems have the same loop transmission moduli, Figure 3.10 shows that
the sensitivity of the nonminimum phase system is very large at low frequency.
This is due to the phase advance of the RHP zero at low frequency (180 degrees). It
is noted that the phase advance of the RHP zero decays to 90 degrees at high
frequency and is indistinguishable from a left half plane zero from this perspective.

3.4.5 Plant knowledge
Model-based control strategies are limited by the fidelity of the plant model. For
example, a designer might have good knowledge (accurate modal frequency,
quality factor, etc.) of the first few modes of a resonant plant, but limited infor-
mation on subsequent modes. Clearly, this represents a bandwidth limitation, as the
designer cannot assume that adequate margins of stability are achieved beyond the
frequencies where there is accurate plant information. A model reduction strategy
that ignores the dynamics at higher frequencies has the potential to cause control
instability. For example, ignoring the last two modes from the second example in
Section 3.4.3 would all but guarantee closed-loop instability if the bandwidth is
high.
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difference in argument is due to RHP zeros of the second system
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3.4.6 Time delay
Transport lag or digital sampling are common causes for time delay, which is
mathematically modeled by GðsÞ ¼ G0ðsÞe�Tds, where G0(s) is the transfer function
of the nondelayed system, Td is the time delay, and G(s) is the frequency response
of the delayed system. Clearly, G(s) is nonminimum phase (inverse is not causal).
The moduli of G(s) and G0(s) are identical; however, the phase delay of G(s) is
greater than G0(s), the difference of which is a linear function of frequency. Figure
3.11 shows an experimentally acquired frequency response function of a system
with time delay. Note the phase delay in excess of what is indicated by the Bode
phase/gain relationship.

3.5 Exercises

1. State the advantages of large feedback.
2. What is the disturbance rejection of the open-loop controller?
3. The loop transmission at w1 is T(jw1) ¼ �0.75 � j0.05. The disturbance

additive at the output is 10 sin(w1t). If there are no other exogenous inputs,
what is the output of the feedback system as t ? ??

4. The loop transmission at w1 is T(jw1) ¼ �60.5 � j0.1. Is the feedback
positive or negative?
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5. The loop transmission at w1 is T(jw1) ¼ �125 þ j0.01. The plant gain at this
frequency is uncertain to within �10% of the nominal gain. What is the effect
of this uncertainty on the tracking performance of the closed-loop system?

6. Explain how a large feedback system design can reduce system cost. Explain
how it can increase the robustness of the system.

7. The loop transmission at w1 is T(jw1) ¼ �0.9 � j0.01. There is substantial
disturbance power at w1. Qualify the closed-loop performance.

8. Explain the trade-off between expensive actuation and large feedback.
9. The loop transmission is TðsÞ ¼ 1;000;000ðsþ1Þ

ðsþ100Þðs2þsþ100Þ. What is the sinusoidal
steady-state response to a reference input r(t) ¼ 10 sin(2t)? To r(t) ¼ 10 sin
(2t)?

10. For the system of the previous problem, find
Ð1

0 logjSðjwÞjdw.
11. The loop transmission of a feedback system is TðsÞ ¼ 100

s2þs�1. CalculateÐ1
0 logjSðjwÞjdw, where S(jw) is the frequency response of the sensitivity

function.
12. The loop transmission of a feedback system is TðsÞ ¼ 100

s2þs�20. CalculateÐ1
0 logjSðjwÞjdw, where S(jw) is the frequency response of the sensitivity

function.
13. Compare the closed-loop performance of the previous two feedback systems.
14. The sensor has monotone noise at 60 Hz of amplitude 2 V. The feedback at

60 Hz is 50 dB. Quantify the feedback system’s sensor noise rejection.
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15. Compare the sensitivity of T1ðsÞ ¼ 106 sþ0:1
ðsþ100Þðs2þsþ100Þ and T2ðsÞ ¼

106 s�0:1
ðsþ100Þðs2þsþ100Þ :

16. The loop transmission phase delay for an analog control loop at frequency w1 ¼
600 rad/s is �170 degrees. The analog compensator is replaced with a digital
controller that introduces a time delay of 2 ms. What is the phase delay of the
digital system at w1?
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Chapter 4

Feedforward

I don’t care if it oscillates on the step. It’s quiet.

– Anonymous

It is clear from the material presented in the previous chapter that large feedback
improves performance in several ways: better tracking, good disturbance rejection
and reduced sensitivity to parameter variations in forward path systems. However,
the Bode sensitivity integral indicates that for systems with greater than first-order
roll-off (most real systems have this characteristic), the log integral of sensitivity
over all frequencies is nonnegative, so negative feedback at some frequencies
results in positive feedback at others. It is also understood that in practical appli-
cations, there are bandwidth limitations that in turn limit the feedback that can be
applied.

In this chapter, methods that improve the performance of a feedback system by
utilizing knowledge of system parameters are investigated. These are referred to as
feedforward systems, although prefilters in series with a feedback system also
belong to this category.

4.1 Command feedforward

Consider the tracking system in Figure 4.1. At frequencies where |F| ¼ |CAP| � 1,
the output y tracks the reference r very closely. However, outside these frequencies,
the feedback system’s performance degrades. Consider the case where the actuator
and plant models A0(s) and P0(s) are accurate. This knowledge can be exploited by
implementing a command feedforward system, shown in Figure 4.2.

The input–output function of this system is

yðsÞ
rðsÞ ¼

FFðsÞAðsÞPðsÞ þ CðsÞAðsÞPðsÞ
1 þ CðsÞAðsÞPðsÞ ð4:1Þ



If FF(s) ¼ (A0(s)P0(s))�1, then

yðsÞ
rðsÞ ¼

ðA0ðsÞP0ðsÞÞ�1AðsÞPðsÞ þ CðsÞAðsÞPðsÞ
1 þ CðsÞAðsÞPðsÞ ð4:2Þ

¼ 1 þ T0ðsÞ�1

1 þ TðsÞ�1 ð4:3Þ

where T0(s) ¼ C(s)A0(s)P0(s). There is unity mapping of reference to output in two
conditions:

1. |C(s)| ? ?. In this case, the feedback is large, so both T�1
0 ðsÞ and T�1(s)

vanish.
2. The actuator and plant models, A0(s) and P0(s), do not deviate substantially

from A(s) and P(s), and T0 (s) ^ T(s). This results in good tracking at fre-
quencies where feedback is not necessarily large.

The command feedforward system improves tracking performance at frequencies
where feedback cannot be large. However, careful consideration of what exactly
the feedback bandwidth limitations are before implementing command feedforward
is indicated. Recall these limiting characteristics from Chapter 3.
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Figure 4.1 Block diagram of a tracking system
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Figure 4.2 Block diagram of a command feedforward system

42 Frequency-domain control design for high-performance systems



1. Actuator limits. If, for example, the actuator is rate limited, command feed-
forward may result in excessive saturation.

2. Plant limits – zeros. If the plant has RHP zeros, then P�1
0 ðsÞ will be an unstable

system.
3. Plant knowledge. Although an accurate model of the actuator may be easy to

develop, the plant model might not be. At frequencies where P0(s) is not close
to P(s), the advantage of command feedforward is lost.

4. Time delay. Time delay, Td, in the plant (e.g. the sensor is digital) requires the
feedforward system to include eTd s, which violates the condition of causality. It
is possible to ameliorate the effect of time delay at low frequency compared to
the sample frequency; however, the exponential function describing the delay
clearly cannot be included in the system FF(s).

In addition to these feedback limitations as they relate to command feedforward,
the system FF(s) should be strictly proper. In most cases, both the actuator and
plant frequency responses decrease at high frequency, so the inverse of the transfer
functions that model these responses would not be proper. This can be mitigated by
including poles in FF(s) at frequencies much higher than the operational frequency
of the feedforward/feedback system.

It is evident that command feedforward is practical in only a few cases, pri-
marily those that involve bandwidth limitations driven by sensor inadequacies.

Example: Command feedforward
Consider a single-input, single-output (SISO) LTI plant PðsÞ ¼ 20;000

sðs2þsþ100Þ. Sensor
limitations limit the bandwidth to 80 rad/s. A sixth-order feedback compensator C(s)
is designed to crossover at 85 rad/s, provide more than 60 dB of feedback at 1 rad/s
and roll off at fourth order at high frequency. The loop transmission T(s) ¼ C(s)P(s)
is shown in Figure 4.3.

Figure 4.4 shows the response to a unit amplitude, 5 rad/s sinusoidal input. There
is nearly 40 dB of feedback at this frequency, and thus the system tracks the input
very accurately. Figure 4.5 shows the response of the same system to the unit
amplitude, 50 rad/s sinusoidal input. The loop gain at this frequency is less than 2,
and thus the tracking lacks accuracy. As the sensor provides a limit on bandwidth,
the tracking performance at this frequency cannot be improved by increasing
feedback.

A command feedforward system is designed to improve the tracking perfor-
mance at frequencies close to crossover. The actuator is assumed to be 1, so the
feedforward filter is simply the inverse of the plant transfer function. However,
P(s)�1 is not proper. So additional poles are applied at frequencies well beyond the
crossover to make this system strictly proper without affecting the phase sig-
nificantly near crossover, FFðsÞ ¼ PðsÞ�1 10;0003

ðsþ10;000Þ3. Figure 4.6 shows the response
to the 50 rad/s reference with the command feedforward system in place. The
tracking performance is greatly improved at this frequency in the close neighbor-
hood of the feedback system crossover.
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4.2 Prefilter

The loop transmission function for a tracking system is as follows:

TðsÞ ¼ ð0:125 � 107Þ s þ 800
ðs þ 2000Þðs2 þ 10s þ 100Þ ð4:4Þ

The frequency response of T(s) is shown in Figure 4.7. The bandwidth is
’ 820 rad/s, with good margins of stability. Sinusoidal disturbances in the functional
bandwidth of 10 rad/s are attenuated by a factor of 5000, which is excellent perfor-
mance. However, the response of the closed-loop system to the reference step has
substantial overshoot, as seen in Figure 4.8. The question arises: How should the
control designer modify the feedback compensator to improve the transient response?
Clearly, the overshoot can be reduced if the loop gain is lowered, indicating a pos-
sible trade-off between disturbance rejection and transient response performance.

The correct answer to this question is ... nothing. The complete design is a
sequence of subdesigns. First, the feedback compensator C(s) is designed to max-
imize available feedback; second, a prefilter R(s) is designed to modify the closed-
loop response of the system. Figure 4.9 is a block diagram of a feedback system
with prefiltering. The closed-loop response of the system is

yðsÞ
rðsÞ ¼ RðsÞ TðsÞ

TðsÞ þ 1
ð4:5Þ

A common prefilter is the notch.

RðsÞ ¼ s2 þ 2pfbs þ ð0:9ð2pfbÞÞ2

s2 þ 2ð2pfbÞs þ ð0:9ð2pfbÞÞ2 ð4:6Þ
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where fb is the 0 dB loop transmission crossover frequency (in Hz). Figure 4.10
shows the step reference response of the example tracking system with the notch
prefilter. The overshoot is substantially reduced without reducing the feedback (no
reduction in disturbance rejection over the functional bandwidth).

It is noted that command feedforward and prefiltering are mathematically
equivalent if R(s) ¼ C �1(s)FF(s) + 1. However, improving the reference tracking
performance requires a lower-order system with command feedforward if the
feedback compensator is strictly proper (its inverse is not proper, requiring more
poles in R(s) at high frequency for strictly proper filter).

4.3 Exercises

1. The feedback bandwidth is 200 Hz. How good is the tracking performance at
180 Hz? Why?

2. A tracking system must be accurate to 30 Hz. Because of bandwidth restric-
tions, the feedback at 30 Hz is 6 dB. Comment on the performance of this
tracking system.

3. Describe the disturbance rejection improvement achieved by the inclusion of
command feedforward to a tracking system.

4. List three characteristics of a feedback tracking system that make it a poor
candidate for command feedforward.

5. The plant has an unstable pole. Describe the transient response characteristics
of the command feedforward system. Focus on the deleterious effects of the
RHP zero.

6. The loop transmission function is

TðsÞ ¼ 109

s5þ211s4þ1:221� 104s3þ2:112� 106s2þ2:21� 107sþ2� 107:

Use Matlab to plot the frequency response of T(s). Quantify the tracking per-
formance at 1, 20, 100, and 150 rad/s. Explain the contrast in performance at
these frequencies.

7. For the system of Problem 6, write a Matlab simulation to find the tracking
system output to sinusoidal inputs at 1, 20, 100, and 150 rad/s.

8. The system with loop transmission T(s) in Problem 6 has insufficient tracking
performance at 20 rad/s. Because of feedback limitations and robustness
requirements, the feedback cannot be increased. Design a command feedfor-
ward system to improve the performance. The feedforward system must be
strictly proper. Use Matlab to plot the response to a sinusoidal input at 20 rad/s.
Compare this to the response of the original feedback controller.

9. For the feedback tracking system of Problem 6, use Matlab to plot the step
response of the closed-loop system. What is the overshoot? Suggest a design
change that does not reduce the feedback of the tracking system.

10. Design a prefilter for the tracking system of Problem 6 to improve the over-
shoot. Use Matlab to compare the transient performance of the feedback sys-
tem and the feedback system with the prefilter.

48 Frequency-domain control design for high-performance systems



Chapter 5

Stability

If the plant is stable, and the retention of stability is the only concern, then
leave the system open loop.

– Anonymous

It is stated in Chapter 3 that feedback improves disturbance rejection and tracking
and reduces sensitivity to parameter variations. In this chapter, the effect of feed-
back on system stability is developed. First, definitions of stability for linear sys-
tems must be developed both in the frequency and time domains. The Nyquist
Stability Criterion, an extremely powerful analysis tool in determining not only the
stability of a feedback system but also its relative stability, is presented. The gen-
eralized Nyquist Criterion is also discussed along with Gershgorin’s Theorem for
the stability analysis of multivariable systems. The deleterious effect of hidden
unstable pole/zero cancelations that Nyquist analysis cannot detect is addressed in
defining the important concept of internal stability. The Lyapunov method for
stability analysis of nonlinear systems is presented so that a treatment of absolute
stability can be included. The latter is of critical importance in the development of
nonlinear compensators discussed in Chapter 7.

5.1 Bounded-input, bounded-output stability

A linear, time invariant (LTI) system with zero initial conditions is said to be
bounded-output, bounded-input (BIBO) stable if every bounded input causes a
bounded output. Although the definition is useful in providing a negative result, it
is not terribly useful in determining if a system is stable.

A single-input, single-output (SISO), LTI, causal and zero-state system is
BIBO stable if and only if its impulse response, g(t), is absolutely integrable on the
interval [0, ?).

Sufficiency
The integral of the absolute value of the impulse response is bounded.

yðtÞ ¼
ð1

0
jgðtÞjdt � N < 1 ð5:1Þ



The zero-state response, y(t), to input u(t) is found by the following convolu-
tion integral:

yðtÞ ¼
ð1

0
uðt � tÞgðtÞdt ð5:2Þ

Take the absolute value of the response.

jyðtÞj ¼
ð1

0
uðt � tÞgðtÞdt

����
���� �

ð1
0
juðt � tÞjjgðtÞjdt ð5:3Þ

The input is bounded, thus for some M < ?, |u(t)| < M, 8t.

jyðtÞj � M

ð1
0
jgðtÞjdt � MN < 1 ð5:4Þ

The last inequality is a consequence of g(t) being absolutely integrable.

Necessity
Assume the system is BIBO stable, but g(t) is not absolutely integrable. For any
arbitrarily large N, there exists some upper limit of integration, t1, such thatÐ t1

0 jgðtÞjdt � N . Select a bounded input u(t1 � t) ¼ sgn(g(t)), where sgn is the
signum function. The output is arbitrarily large, yðt1Þ ¼

Ð1
0 gðtÞuðt1 � tÞdt¼Ð1

0 jgðtÞjdt> N This contradicts the assumption of BIBO stability.
Stability of SISO, LTI systems is determined finding the roots of the char-

acteristic polynomial. A SISO, LTI system with a proper rational transfer function
G(s) is BIBO stable if and only if every pole of G(s) has a negative real part (open
left half plane (OLHP)). If G(s) has a pole, pi, with multiplicity, mi, the partial
fraction expansion has the factors 1

s�pi
, 1
ðs�piÞ2 � � � 1

ðs�piÞmi . The inverse Laplace trans-
forms of these terms are epit, tepit . . . tmi�1epit. These are absolutely integrable if and
only if pi has a negative real part.

5.1.1 Marginally stable systems
Linear systems with distinct poles with zero real parts (on the jw axis) and all other
poles having negative real parts are referred to as marginally stable. These systems
have bounded responses to most bounded inputs; however, particular bounded
inputs will result in unbounded outputs. Systems with an integrator (a single pole at
the origin with all other poles in the OLHP) are marginally stable. Consider a linear
system with the following transfer function:

GðsÞ ¼ 10
sðs þ 10Þ ð5:5Þ

The poles are at s ¼ 0 and s ¼ �10. The Laplace transform of the response of
this system to the unit step function is

yðsÞ ¼ 10
s2ðs þ 10Þ ð5:6Þ
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The partial fraction expansion of y(s) is

yðsÞ ¼ �0:1
s

þ 1
s2

þ 0:1
s þ 10

ð5:7Þ

The inverse Laplace transform of y(s) is

yðtÞ ¼ �0:1 þ t þ 0:1e�10t
� �

1þ ð5:8Þ

where 1þ is the unit step function. The second term is the ramp function, which is
unbounded. So, the marginally stable system is not BIBO stable. However, the
response of this system to other bounded inputs is bounded. For instance, the
response of the same system to the bounded exponential input e�5t is

yðtÞ ¼ 0:2 � 0:4e�5t þ 0:2e�10t
� �

1þ ð5:9Þ

which is bounded. It is noted that the marginally stable systems differ from systems
with right half plane (RHP) poles. For example, the response of the linear system
with transfer function GðsÞ ¼ 10

s�10 to a bounded input will have an unbounded
exponential term e10t (the natural response of the system is always divergent).
Similarly, marginally stable systems differ from systems with left half plane (LHP)
poles and repeated poles on the jw axis (e.g. the response to the linear system with
transfer function GðsÞ ¼ 10

s2ðsþ10Þ to bounded inputs will include the ramp function as
part of the natural response).

5.1.2 BIBO stability of state equations
The definition of BIBO stability is expanded to the time domain description of LTI
systems. Given the (A, B, C, D) state space realization, the transfer matrix is found.

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þ DuðtÞ

Take the Laplace transform of the state differential equation to find the response.

sIX ðsÞ ¼ AX ðsÞ þ BUðsÞ
X ðsÞ ¼ ðsI � AÞ�1BUðsÞ

CX ðsÞ ¼ CðsI � AÞ�1BUðsÞ
Y ðsÞ ¼ CðsI � AÞ�1BUðsÞ þ DUðsÞ

The transfer matrix mapping U(s) to Y(s) is

GðsÞ ¼ CðsI � AÞ�1B þ D ð5:10Þ
¼ 1

detðsI � AÞCadjðsI � AÞB þ D ð5:11Þ
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where adj(�) is the adjoint matrix. The multiple-input, multiple-output (MIMO)
system with transfer matrix is BIBO stable if and only if the poles of each rational
function element all have negative real parts.

It is evident that the poles of transfer matrix G(s) are eigenvalues of the state
matrix A. However, eigenvalues of A are not necessarily poles of G(s), as there is
the possibility of common factors of elements of Cadj(sI � A)B and the polynomial
det(sI � A), which is the case for state space realizations that are not minimal.
Thus, even if A has eigenvalues with positive real parts, the system is BIBO stable
if there is cancelation of the unstable factors of det(sI � A).

5.2 Zero input stability

Consider the LTI system with zero input and nonzero initial state x0. The solution
of the state differential equation _x ¼ AxðtÞ is x(t) ¼ eAtx0.

Definition: Marginal stability
The zero input response of _x ¼ Ax is marginally stable if every finite initial state x0

excites a bounded response.

Definition: Asymptotic stability
The zero input response is asymptotically stable if every finite initial state excites a
bounded response that approaches zero as t ? ?.

System _x ¼ Ax is asymptotically stable if and only if all eigenvalues of A have
negative real parts. It is evident that asymptotic stability implies BIBO stability;
however, the converse is not necessarily true. It is marginally stable if and only if
all eigenvalues of A have zero or negative real parts, and those with zero real parts
are simple roots of the minimal polynomial of A. The method using the Lyapunov
Theorem to determine asymptotic stability has been explained in Reference 3.

5.2.1 Hidden modes
Consider a system consisting of a cascade of two SISO systems, figure 5.1. The
unstable pole of the second system is canceled by the nonminimum phase zero of
the first system, and the transfer function of the resulting BIBO stable system is
GðsÞ ¼ yðsÞ

uðsÞ ¼ 1
sþ1. We now find two different state space realizations:

X ðsÞ ¼ 1
s þ 1

UðsÞ ð5:12Þ

G1 G2

Y(s)

Output

U(s)

Input 1

1

s

s –

+

1Psi(s)

1s –

Figure 5.1 Linear system with pole/zero cancellation

52 Frequency-domain control design for high-performance systems



Employing the derivative property of the Laplace transform yields the following
differential equation:

_xðtÞ þ xðtÞ ¼ uðtÞ ð5:13Þ
_xðtÞ ¼ �xðtÞ þ uðtÞ ð5:14Þ

Now we solve for the intermediate signal y.

YðsÞ ¼ ðs � 1ÞX ðsÞ ð5:15Þ
yðtÞ ¼ _xðtÞ � xðtÞ ð5:16Þ

¼ �xðtÞ þ uðtÞ � xðtÞ ð5:17Þ
¼ �2xðtÞ þ uðtÞ ð5:18Þ

Now we find the derivative of the output y(t).

Y ðsÞ ¼ 1
ðs � 1ÞYðsÞ ð5:19Þ

_yðtÞ � yðtÞ ¼ �2xðtÞ þ uðtÞ ð5:20Þ
_yðtÞ ¼ �2xðtÞ þ yðtÞ þ uðtÞ ð5:21Þ

Now the state equations can be expressed.

_x
_y

� �
¼ �1 0

�2 1

� �
x
y

� �
þ 1

1

� �
u; y ¼ ½ 0 1 � x

y

� �
ð5:22Þ

The observability matrix
0 1
�2 1

� �
is rank 2, whereas the controllability matrix

1 �1
1 �1

� �
is rank 1. Thus, the state space realization is not minimal. In this case,

the unstable block is separated from the input by the nonminimum phase zero in the
second block.

Consider the same system (from the perspective of input–output transfer
function), but with the order of the blocks reversed.

YðsÞ ¼ 1
s � 1

UðsÞ ð5:23Þ

_yðtÞ � yðtÞ ¼ uðtÞ ð5:24Þ

yðsÞ ¼ s � 1
s þ 1

yðsÞ ð5:25Þ

_yðtÞ þ yðtÞ ¼ _yðtÞ � yðtÞ ð5:26Þ
¼ uðtÞ ð5:27Þ

_yðtÞ ¼ �yðtÞ þ uðtÞ ð5:28Þ
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The state equations for this system are

_y
_y

� �
¼ 1 0

0 �1

� �
y
y

� �
þ 1

1

� �
u; y ¼ ½ 0 1 � y

y

� �

The controllability matrix
1 1
1 �1

� �
is rank 2, whereas the observability

matrix is
0 1
0 �1

� �
is rank 1. This state space realization is not minimal. In that

case, the unstable pole is separated from the output by the nonminimum phase zero.
Systems that are BIBO stable with hidden unstable poles have a particularly

sinister quality. For the second system, consider the internal signal y(t) with a
nonzero, finite initial value and u(t) ¼ 0.

_yðtÞ ¼ yðtÞ ð5:29Þ
yðtÞ ¼ etyð0Þ ð5:30Þ

The response to this initial condition is unbounded. Although stable from the input–
output perspective, systems with unstable pole/zero cancelations lack zero input
stability and feedback systems will lack internal stability, to be discussed later. As
such, unstable poles should never be canceled by introducing zeros at the same
location in the complex plane.

5.3 Nyquist Stability Criterion

The stability of feedback systems is now investigated. The location of the zeros of
F(s) ¼ 1 þ T(s), which are the location of the closed-loop poles, can be determined
in a number of ways. The Routh Criterion can be used to determine if there are
RHP poles. The root locus method finds the location of closed-loop poles as a
function of a variable parameter. Although effective, these methods provide little in
the way of insight into the relationship of the loop transmission function and the
condition of closed-loop stability.

Cauchy’s Theorem (Principle of the Argument)
If a closed contour Gs in the s-plane encircles Z zeros and P poles of F(s) and does
not pass through any poles or zeros of F(s) and the traversal about the contour is
clockwise, the corresponding contour GF in the F(s) plane encircles the origin of
this plane N ¼ Z � P times in the clockwise direction.

The mapping of a closed contour through function F(s) reveals the relative
number of zeros and poles of the function residing within the contour without direct
calculation of polynomial roots. Consider a contour in the s-plane beginning at the
origin, proceeding up the positive imaginary axis to j?, sweeping clockwise in a
semicircle of infinite radius to �j?, then back to the origin along the negative
imaginary axis. This contour, GN, encloses the entire RHP and is called the Nyquist
contour. If F(s) is the return difference of a feedback system, Cauchy’s Theorem
can be used to determine closed-loop stability. Note that the zeros of F(s) in this
case are the closed-loop poles of the feedback system. For BIBO stability, it is a
requirement that no zeros of F(s) reside in the RHP.

54 Frequency-domain control design for high-performance systems



Nyquist Stability Criterion
A feedback control system is stable if and only if for the contour GF (called the
Nyquist plot) found by mapping the Nyquist contour GN through the return ratio
F(s), the number of anticlockwise encirclements of the origin of the F-plane is
equal to the number of poles of F(s) in the open right half plane (ORHP).

This follows from Cauchy’s Theorem for the specific case of mapping the
Nyquist contour through the return difference. For stability, the number of zeros of
F(s) within the Nyquist contour must be zero (i.e. Z ¼ 0). So, the number of
F-plane origin encirclements must be N ¼ 0 � P ¼ �P. Note that P is the number
of poles of the return difference within the Nyquist contour. Recall that the return
difference is the loop transmission plus 1, (i.e. 1 þ T(s)). If TðsÞ ¼ nðsÞ

dðsÞ, then
FðsÞ ¼ nðsÞþdðsÞ

dðsÞ , and the poles of the return difference are the poles of the loop
transmission. So, only the number of open-loop RHP poles (P) need be known to
assess the stability of the closed-loop system. The F-plane plot must encircle the
origin P times in the anticlockwise direction.

It is evident that the Nyquist Stability Criterion may be implemented when
the Nyquist contour is mapped through the loop transmission function T(s). As
T(s)¼F(s)�1, the T-plane plot must encircle the point �1 þ j0 P times antic-
lockwise as a necessary and sufficient condition for closed-loop stability. This is
typically the plot that is utilized, as the loop transmission function is more easily
calculated. In addition, for some systems where a model is not readily available, the
frequency response of the loop opened at convenient point may be experimentally
measured. Note that the polar plot of this response represents a part of the Nyquist plot
(the mapping of the positive jw axis through the loop transmission). For strictly proper
systems, this represents half the plot. The missing half (the mapping of the negative
imaginary axis) is symmetric about the real axis of the T-plane plot. As such, the point
�1 in the T-plane is particularly significant, warranting the name critical point.

The effect of a scalar gain, k, applied to the loop transmission function is easily
determined by analyzing the T-plane plot. k > 1 expands the plot away from the
origin by this factor at all points, 0 < k < 1 shrinks the plot by this factor. A glance
at the T-plane plot (k ¼ 1) shows how much gain increase or decrease is possible
without encircling the critical point. For k < 0, the T-plane plot flips about the
imaginary axis, retaining the original contour direction. For example, consider
TðsÞ ¼ 1

sþ5. The frequency response is

TðjwÞ ¼ 1
jwþ 5

ð5:31Þ

¼ 5 � jw
w2 þ 25

ð5:32Þ

The plot of this is half the Nyquist plot, shown in Figure 5.2. Now consider kT(s),
k ¼ �1. The frequency response is

TðjwÞ ¼ �1
jwþ 5

ð5:33Þ

¼ �5 þ jw
w2 þ 25

ð5:34Þ
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The negation moves the points to the diagonal quadrant, where the graph
proceeds in the same direction as the original plot. This is the effect of adding 180
degrees of phase delay (sign inversion) to the original system T(s) (Figure 5.3).
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Figure 5.2 Nyquist plot of 1
sþ5
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Figure 5.3 Nyquist plot of (�1) 1
sþ5

56 Frequency-domain control design for high-performance systems



Examples: Nyquist Stability Criterion
Figure 5.4 shows the T-plane plot of TðsÞ ¼ 100

ðsþ1Þðsþ10Þ. The loop transmission func-
tion is stable, thus the closed-loop system is stable by the Nyquist Criterion if there
are no net encirclements of the critical point. The phase of this function approaches
�180 degrees at high frequency, so the critical point cannot be encircled regardless
of whatever gain increase is applied. The closed-loop system is stable.

Figure 5.5 is the T-plane plot of the loop transmission function TðsÞ ¼ 0:5
s�1.

There is one RHP pole of this system, thus by the Nyquist Criterion the T-plane plot
must encircle the critical point one time in the anticlockwise direction (it does not).
It is evident that if the gain is increased by k > 2, the T-plane plot encircles �1 one
time counterclockwise, and the system is stable.

Consider the loop transmission function TðsÞ ¼ 100
ðs�1Þðs�10Þ. The system has two

RHP poles, and thus the Nyquist locus must encircle the critical point twice in the
counterclockwise direction. Figure 5.6 shows the Nyquist plot of this function. It is
evident that the system is unstable. In addition, an increase in gain does not stabi-
lize the system as it did in the prequel, as the Nyquist locus does not cross the
negative real axis and thus cannot encircle the critical point. If a sign inversion is
introduced into the loop, the Nyquist locus rotates about the imaginary axis and
retains its direction. The plot now encircles the critical point one time in the
anticlockwise direction. The closed-loop system is still unstable, with a single
unstable pole as opposed to two.
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Figure 5.4 Nyquist plot of 100
ðsþ1Þðsþ10Þ
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Figure 5.7 shows the Nyquist plot of loop transmission function TðsÞ ¼ 100ðs�1Þ
s2þ10sþ100

System T(s) is stable, so zero net encirclements of the critical point is necessary
for closed-loop stability. Note the effect of the RHP zero in the loop transmission.
The DC gain and phase are 1 and 180�, respectively, and the Nyquist locus
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Figure 5.5 Nyquist plot of 0:5
s�1
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Figure 5.6 Nyquist plot of 100
ðs�1Þðs�10Þ
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intersects the critical point. If no additional loop shaping is applied (only gain
changes implemented), then the loop gain must be reduced to satisfy the Nyquist
Criterion. This is an example of the limiting feature of RHP zeros in feedback
systems, particularly the upper bound on proportional feedback they present (root
locus analysis readily identifies this as well). The negative effect of an RHP zero is
most pronounced in the neighborhood of its natural frequency. For T(s), the phase
change at w << 1 rad/s is very small (the phase contribution is approximately 180
degrees). Similarly, the phase change at w >> 1 rad/s is very small, and the con-
tribution is ~90 degrees, which is the same as that of a LHP zero at frequencies
much higher than the natural frequency. The RHP and LHP zero is indistinguish-
able at these frequencies from a phase perspective. In the neighborhood of the
natural frequency, the RHP zero phase decreases by 90 degrees. It is this non-
minimum phase delay that is a threat to stability and must be carefully taken into
consideration when designing the controller. Bandpass-type loop transmissions
where negative feedback is applied at frequencies much different than the RHP
zero natural frequency are not adversely affected.

The Nyquist plot of TðsÞ ¼ 100ðsþ1Þ
s2þ10s�100 is shown in Figure 5.8. There is one

unstable open-loop pole, and one anticlockwise encirclement of the critical point is
required for closed-loop stability. An increase in loop gain accomplishes this. Now
consider a similar system with T-plane plot shown in Figure 5.9. The poles are in
the same location, the zero is at s¼ 1. The RHP zero reverses the direction of the
Nyquist locus, and thus no combination of sign inversion or gain adjustment can
provide the required anticlockwise encirclement of the critical point.

Figure 5.10 shows the T-plane plot of TðsÞ ¼ 100
sðsþ10Þ. A condition of Cauchy’s

Theorem is that the s-plane contour not pass through any poles or zeros of the
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Figure 5.7 Nyquist plot of 100ðs�1Þ
s2þ10sþ100
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mapping function. The Nyquist contour does pass through the origin pole of T(s).
The modified Nyquist contour is implemented here, where poles and zeros on the
jw axis are circumvented by a semicircle of infinitesimal radius to their right. As
such, these poles and zeros are not encircled by the s-plane contour and do not
contribute to integers Z and P.
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Figure 5.8 Nyquist plot of 100ðsþ1Þ
s2þ10s�100

−1 −0.5 0 0.5 1 1.5 2 2.5
−4

−3

−2

−1

0

1

2

3

4

Nyquist diagram

Real axis

Im
ag

in
ar

y
 a

x
is

Figure 5.9 Nyquist plot of 100ðs�1Þ
s2þ10s�100
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The proximity of the modified Nyquist contour to the imaginary poles results
in very large magnitude loci in the T-plane, making impossible the plotting of the
entire T-plane locus. The plots are typically zoomed in about the origin, with
breaks in the plot in the neighborhood of imaginary poles. This requires analysis
of function T(s) to determine in which direction the unplotted curves of T(s)
are rotating to determine the number of net encirclements of the critical point
and the determination of stability of the closed-loop system using the Nyquist
Criterion.

The plot starts slightly to the left of the negative imaginary axis (third quad-
rant) (first mapped point is s¼ [, [ an infinitesimal positive number) and approa-
ches the origin along the negative real axis as s ? j?. The locus proceeds to the
left of the positive imaginary axis as s takes on values on the negative real axis
approaching the point s¼�j[. Critical information related to closed-loop stability
is missing in the T-plane plot. Are there encirclements of the critical point by the
plot not shown in the figure? The critical missing part of the Nyquist plot is
the mapping of the semicircular arc around the origin pole of T(s). The modified
Nyquist contour starting at s¼�j[ and ending at s¼ j[ has a phase increase of
p radians. The mapping of this through T(s) results in a phase change of �p in the
T-plane (origin root of the denominator polynomial). This is a rotation through
the first and fourth quadrants of the T-plane. As such, the Nyquist plot does not
encircle the critical point, and the closed-loop system is stable (no poles of T(s)
in RHP).

Consider the loop transmission function TðsÞ ¼ 10
sðsþ1Þ2, mapping the modified

Nyquist contour to the complex function plotted in Figure 5.11. The Nyquist Cri-
terion requires no net encirclements of the critical point (T(s) has an origin pole and
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Figure 5.10 Nyquist plot of 100
sðsþ10Þ
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two LHP poles, P¼ 0). Again the plot starts along the negative imaginary axis, but
as the relative degree is 3, the Nyquist plot approaches the origin along the positive
imaginary axis as s ? j?. The remainder of the plot is symmetric to this as
s approaches the semicircle about s¼ 0 along the negative imaginary axis of the
s-plane. There is one clockwise encirclement of the critical point seen in this plot.
It is important to determine if there are any more encirclements of the unplotted
part of the Nyquist plot to determine if the closed-loop system is stable
(an unplotted counterclockwise encirclement, making the number of net encircle-
ments zero) or unstable (no additional encirclements or additional clockwise
encirclements).

Like the previous example, there is a single origin pole of T(s). The phase in
the T-plane is �p, and the unplotted part of the Nyquist locus wraps clockwise
from the top to the bottom of the plot. Thus, a second clockwise encirclement is
completed, and there are N¼ 2 unstable poles in the closed-loop system.

Consider the Nyquist plot of TðsÞ ¼ 1
s2ðsþ10Þ shown in Figure 5.12. The function

has one LHP pole and two origin poles. The phase of the system at low frequency is
slightly less than 180 degrees, and the plot approaches the origin along the positive
imaginary axis (relative degree is 3). The plot then proceeds along the negative real
axis in the third quadrant as s takes on negative imaginary values. There are two
origin poles, so the phase change in the T-plane from the mapping of the modified
Nyquist semicircle about the origin is 2p. The T-plane plot wraps around the origin
in the clockwise direction, and the critical point is encircled twice clockwise. There
are two unstable closed-loop poles.
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Figure 5.11 Nyquist plot of 10
sðsþ1Þ2
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5.4 Relative stability

The Nyquist Stability Criterion indicates whether a closed-loop system is stable or
unstable. In Chapter 3, it is stated that positive feedback (|F(s)| < 1) amplifies
disturbances. Consider two control systems with bandwidth w1. Both systems are
stable in the open-loop condition, and the T-plane plots have zero net encirclements
of the critical point. Both systems are stable by the Nyquist Stability Criterion. The
loop transmissions at crossover are T1(jw1)¼�0.5 � j0.866 and T2(jw1)¼�0.996 �
j0.087, respectively. The feedback |1 þ T(jw1)| is substantially different, 1 and
0.0872, respectively, so for a sinusoidal disturbance at w1 additive at the output of the
plant, the first system does not amplify this disturbance, whereas the second system
amplifies it by a factor of more than 11. Although both controllers are stable by the
Nyquist Stability Criterion, the first controller is relatively more stable than the
second. It is evident that there is a relationship between positive feedback and rela-
tive stability.

Measures of relative stability relate to the closeness of the T-plane Nyquist plot
to the critical point. The phase margin in degrees is a measure of closeness to the
critical point of the T-plane plot as it crosses the unit circle, |T|¼ 1.

fm ¼ �ð�180� � argðTðjwÞÞjTðjwÞ¼1jÞ ð5:35Þ

The larger the phase margin, the greater the separation of the T-plane plot on the
unit circle and the critical point, and the greater the relative stability. The phase
margins of the two example systems are 60 and 5 degrees, respectively. If the
T-plane plot crosses the unit circle in the third or fourth quadrant, the phase margin
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Figure 5.12 Nyquist plot of 1
s2ðsþ10Þ
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is positive. If it crosses in the first or second quadrant, the phase margin is negative.
The magnitude of the phase margin indicates closeness to the critical point,
while the sign gives an indication of whether or not the T-plane plot is wrapping
around the critical point.

Another measure of relative stability is the gain margin in decibels, which
measures the separation of the T-plane plot as it intersects the negative real axis and
the critical point.

Km ¼ �20log10x ð5:36Þ
Quantity x is the inverse of the magnitude of T as it crosses the negative real axis.
So, if the T-plane plot crosses the negative real axis inside the unit circle, the gain
margin is positive. If it crosses outside the unit circle, the gain margin is negative.
Like the sign of the phase margin, the sign of the gain margin indicates if the
T-plane plot is wrapping around the critical point.

For control systems that are stable in the open loop, phase and gain margin
give a measure of how much increase in the loop gain and/or decrease in the loop
phase is acceptable before stability is threatened because they give an indication of
how close the T-plane plot is to encircling the critical point. There are instances
where the utility of these measures is reduced. The T-plane plot of a controller that
is unstable in the open loop must encircle the critical point in the anticlockwise
direction, so negative margins of stability are possible, but necessary for satisfac-
tion of the Nyquist Stability Criterion. Stability margins for advanced control
designs might be misleading. Figures 5.13 and 5.14 are the T-plane plots of a
controller stable in the open loop. Clearly, the system is stable by the Nyquist
Stability Criterion, but the phase margin is negative, thereby giving a false
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Figure 5.13 A stable controller with a negative phase margin
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indication of poor relative stability. This type of plot is common in phase-stabilized
controllers, which will be discussed later. Figures 5.15, 5.16 and 5.17 are the
T-plane plots of a controller stable in the open loop. There are three crossings of the
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Figure 5.14 A stable controller with a negative phase margin (zoomed in around
origin)
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Figure 5.15 A stable controller with a negative gain margin
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negative real axis: two outside the unit circle (negative gain margins) and one
inside. Is the system stable? There are zero net encirclements of the critical point,
so the closed-loop system is stable by the Nyquist Stability Criterion. Yet how are
the multiple negative gain margins to be interpreted? In this case, the negative gain
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Figure 5.16 A stable controller with a negative gain margin (zoomed in around
the origin)

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Nyquist diagram

Real axis

Im
ag

in
ar

y
 a

x
is

Figure 5.17 A stable controller with a negative gain margin (zoomed in closer to
the origin)
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margins give an indication of how much gain reduction is possible before the cri-
tical point is encircled, not an indication that the critical point is being encircled.
This is a Nyquist-stable controller and will be discussed later.

It is evident that there is a relationship between the margins of stability
and positive feedback. Small margins indicate a closeness to the critical point, or
|1 þ T(jw)| is small (positive feedback). So, controllers with poor relative stability
will amplify disturbances at frequencies close to the crossover.

5.5 Internal stability

A transfer matrix is exponentially stable if and only if it is proper (improper sys-
tems may not be BIBO stable) and has no poles in the closed right half plane
(CRHP). Consider the feedback system shown in Figure 5.18. The mapping of the
external signals to internal signals is

e1ðsÞ
e2ðsÞ

� �
¼ H11ðsÞ H12ðsÞ

H21ðsÞ H22ðsÞ
� �

u1ðsÞ
u2ðsÞ

� �
¼ HðsÞ u1ðsÞ

u2ðsÞ
� �

ð5:37Þ

The feedback system is said to be internally stable if and only if the transfer matrix
H(s) is exponentially stable. Satisfaction of this definition eliminates the possibility
of RHP pole-zero cancelations between systems G1(s) and G2(s) that stability
analysis using the loop transmission matrix G1(s)G1(s) cannot account for. A sys-
tem with RHP pole-zero cancelations might be stable in an input–output sense, but
internal signals yield unbounded outputs.

If both G1(s) and G2(s) are unstable, then all four transfer matrices of H(s) need
to be checked for exponential stability. However, if one of the two, say G2(s) is
stable, then only H21(s)¼ [I � G1(s)G2(s)]�1G1(s) need to be checked for expo-
nential stability. This is a common condition, as while the plant in the forward path
might cause G1(s) to be unstable, systems in the feedback path are typically related
to the sensors and are stable. Furthermore, if G2(s) is exponentially stable, H21(s) is
exponentially stable if and only if det[I � G1(s)G2(s)] has no zeros in the CRHP
and [I � G1(s)G2(s)]�1G1(s) is analytic at every CRHP pole of G1(s). The first
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y1(s)

Output 1
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+

Figure 5.18 Feedback system with two external inputs
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condition is no poles of the closed-loop system in the CRHP, and the second con-
dition prevents CRHP pole-zero cancelation.

5.6 Generalized Nyquist Stability Criterion

Stability of the multivariable feedback system can be ascertained by analysis of
the loop transmission matrix kT(s), where k [ <, T(s) [ Fn� n(s). The function
det[I þ kT(s)] has p poles and z zeros in the CRHP. By the Principle of the Argu-
ment, the change in argument of this function as the Nyquist contour is mapped
through it is equal to the difference in CRHP poles and zeros multiplied by 2p.

Dargðdet½I þ kTðsÞ�Þ ¼ �2pðz � pÞ ð5:38Þ
A condition of internal stability is det([I þ kT(s)]) having no CRHP zeros
(z¼ 0), so Darg(det[I þ kT(s)])¼ 2pp. Unlike the case of SISO Nyquist
analysis, where the effect of increasing or decreasing k on the Nyquist plot is clear,
an analysis of the plot must be performed for every value of k. Consider the
eigenvalue decomposition of matrix T(s)¼M(s)L(s)M�1(s), where M(s) and L(s)
are the eigenvector matrix and the diagonal matrix of eigenvalues as a function
of the Laplace variable, respectively. A single gain is applied to all channels,
so kT(s)¼ kIM(s)L(s)M�1(s)¼M(s)[kL(s)]M�1(s). I þ kT(s)¼M(s)M�1(s) þ M(s)
kL(s)M�1(s)¼M(s)[I þkL(s)]M�1(s). The determinant is the product of
the eigenvalues, so det[IþkT(s)]¼ (1þkl1(s))(1þkl2(s)) . . . (1þkln(s)) and
Dargðdet½I þ kTðsÞ�Þ ¼ Pn

i¼1 Darg½1 þ kliðsÞ�. Closed-loop stability is now
assessed by counting the number of encirclements of the origin by the plots of 1 þ
kli(s), or equivalently the number of encirclements of the critical point (0 þ j1) by
the plots of kli(s). These plots are referred to as the characteristic loci.

5.7 Gershgorin analysis

The Generalized Nyquist Stability Criterion requires the determination of the
eigenvalues of the loop transmission matrix over a large range of frequencies, and
the plotting of the characteristic loci to determine the stability of the multivariable
feedback system. There is an elegant theorem developed by the Byelorussian
mathematician Gershgorin that can be used as an alternative to this that does not
require eigenvalue calculation.

Gershgorin’s Theorem
The eigenvalues of an n � n complex matrix T lie in the union of n circles. The
center of the ith circle (1 � i � n)tii is the ith diagonal element of T. The radius of
this circle is

X
j

tijxj ¼ tij
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The eigenvalues also lie in the union of circles, each with center tii and
radius

X
i 6¼j

jtijj:

Proof
Let l be an eigenvector of matrix T and x be the corresponding eigenvector. Let xi

have the largest absolute value in x. |xi| > 0, or x¼ 0.

Tx ¼ lx ð5:39Þ
X

j

tijxj ¼ lxi ð5:40Þ
X
j 6¼i

tijxj ¼ lxi � tiixi ð5:41Þ

Divide both sides by xi.

jl� tiij ¼ j
P

j 6¼itijxj

xi
j �

X
j 6¼i

jtijj ð5:42Þ

Gershgorin’s Theorem is applied to the problem of determining multivariable
feedback control stability.

Definition: Nyquist array
An array of individual Nyquist plots, the ijth being the Nyquist plot of the ijth
transfer function of the transfer matrix.

Consider the Nyquist array of square transfer matrix T(s). Superimpose on each
point of the complex plot of tii(jw) a circle of radius

P
jjtijj, j 6¼ i or

P
ijtijj, i 6¼ j.

The circles create bands, referred to as Gershgorin bands, the union of which
contains the union of the characteristic loci. It can be shown that if the Gershgorin
bands occupy distinct regions, as there are as many characteristic loci contained in
the region as the number of Gershgorin bands occupying it (see Maciejowski).
Thus, if all Gershgorin bands of the loop transmission matrix exclude the critical
point, one can assess closed-loop stability by counting the encirclements of the
critical point by the Gershgorin bands. This allows determination of control system
stability without having to calculate the eigenvalues of the transfer matrix eval-
uated over the Nyquist contour.

It is noted that the Gershgorin Theorem applied to multivariable stability
determination is a sufficient condition. If the Gershgorin bands overlap the critical
point, nothing can be stated about the stability of the feedback system.

5.7.1 Case study: multiaxis control of a parallel robot
As opposed to serial robots, the base of the robot and the end-effector form a closed
kinematic chain. These types of robots have increased payload and speed and
are potentially more accurate than their serial counterparts, with the drawbacks
of small workspace and more complicated kinematics and dynamics. A diagram of
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the 3 � UPS, 1 � PU is shown in Figure 5.19. Points 1, 2, 3 and 4 are fixed on the
static base. Points 5, 6, 7 and 8(E) are fixed on the moving, rigid end-effector. The
base and the end-effector are connected by four legs. The leg that connects points 1
and 5 has the following architecture: a passive universal joint at point 1 with revolute
axes h1x and h1y, an active prismatic joint that changes the distance from points 1 and
5, and a passive spherical joint at point 5. The same architecture is applied to the legs
connecting points 2 and 6, and 3 and 7. The vertical leg located at the center of the
circle defined by points 1, 2 and 3 on the circumference has the following archi-
tecture: a rigid connection to the base, a passive prismatic joint (slider) connecting
points 0 and 8(E), and a passive universal joint at point 8(E) with revolute axes x and
y. A reference frame is fixed to the base with its origin at point 0 (the {0} frame) and
another is fixed to the end-effector with its origin at point 8(E) (the {E} frame). The
pose of the end-effector is defined at the position of 8(E) and the orientation of frame
{E} referenced to the position of 0 and the orientation of frame {0}, respectively.

The 3 � UPS, 1 � PU is a limited-DOF parallel mechanism, defined as a
spatial mechanism with fewer than 6 active DOFs. A wrench applied on the end-
effector is resisted by a combination of active joint forces/torques and the robot
structure. The 3 � UPS, 1 � PU center leg allows only translation in the
z-direction, and rotation in the x- and y-directions. The passive joints at the ends of
the active legs allow the transmission of forces along the leg axes only. The
remaining force/torque is supplied by the structure of the center leg (x- and y-forces
and z-torques). It is clear that the center leg must be sufficiently sturdy to ade-
quately provide this resistive force/torque. A unique design feature of this parallel
mechanism is the use of high-force voice actuation for high-bandwidth control of
heavy payloads with simultaneous passive isolation. The actuators are compliant
high-force voice coils. The decade 1–10 Hz is targeted for negative feedback, while
high frequency disturbances are attenuated passively due to soft suspension.

Plant identification
To identify the plant frequency responses, a random signal is digitized and the
inverse kinematic solution is applied to generate either tip or tilt axis excitation.
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Figure 5.19 3-UPS – 1 – PU parallel robot

70 Frequency-domain control design for high-performance systems



The three signals are converted to analog and sent to the three actuator current
amplifiers. For each axis excitation, both tip and tilt measurements from the sensor
are recorded. The diagonal frequency responses are shown in Figures 5.20 and 5.21.
The off-diagonal frequency response moduli are shown in Figure 5.22. While there
is coupling between axes caused by a deadzone in the 1 � PU universal joint, it
is most significant in the neighborhood of 10 Hz, where the loop gain is largest and
the Gershgorin circles are centered near their maximum distance from the critical
point. The control problem is treated as two independent, single-input/single-output
designs.

Compensator design
The control design goal is to apply as much feedback as feasible in the 1–10
Hz decade. Feedback bandwidth limitations include a second-order roll-off in
plant response at frequencies higher than 10 Hz, plant resonances starting at
40 Hz, and sensor noise becoming restrictive in the 100–1000 Hz decade.
Two fourth-order compensators are designed for the two-axis controller. The
frequency response for the x-axis controller is seen in Figure 5.23. The y-axis
compensator is similar. The conjugate zeros at 0.8 Hz boost the feedback in the
critical frequency interval 1–10 Hz. A wide first-order lead provides phase
margin for multiple return ratio 0 dB crossovers in the 10–100 Hz decade. The
flexible body modes in the octave 100–200 Hz represent a severe performance
limitation if gain is stabilized, and a robustness threat if the quality factors
are time-varying. Thus, the modes are phase stabilized by a real pole in
the compensator at 100 Hz. The return ratios for the controller are seen in
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Figure 5.20 Plant frequency response: x-input/x-output
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Figures 5.24 and 5.25. Maximum negative feedback in the 1–10 Hz decade is
approximately 27 dB. Considering the feedback limitations, the controller is
aggressive. If base disturbance signal power in the 10–100 Hz decade is large,
the controllers will have to be modified slightly to increase stability margins at
the cost of reduced low-frequency negative feedback.
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Figures 5.26 and 5.27 show the Gershgorin circles superimposed on the diag-
onal elements of the 2 � 2 Nyquist array for the vibration suppression controller
return ratio. As expected, the largest diameter circles (cross-coupling at the rigid
body mode frequencies) do not overlap the critical point. The circles clustered
around the origin indicate cross-coupling due to the phase-stabilized flexible-body
modes at 800–900 rad/s. The plots indicate a lack of diagonal dominance (the
origin is overlapped), and the critical point is overlapped in the (2, 2) Nyquist
element; however, as the test is only sufficient, this is not an indication of
instability. Indeed, using the Generalized Nyquist Criterion for an open-loop stable
multivariable system, the characteristic loci plot shown in Figure 5.28 indicates
closed-loop stability.

5.8 Lyapunov method

It is desired to determine the stability of an equilibrium point (xe ] f(xe, t) : 0) of a
nonautonomous system _x ¼ f ðxðtÞ, tÞ, x(t0)¼ x0 [ <n that satisfies the conditions of
existence and uniqueness. It is noted that the equilibrium point can be shifted to the
origin, i.e. xe¼ 0. For systems with multiple equilibrium points (e.g. the pendulum),
the stability of each must be assessed by origin shifts.
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Figure 5.25 Y-axis return ratio frequency response

74 Frequency-domain control design for high-performance systems



−15 −10 −5 0 5 10 15 20 25 30 35
−20

−15

−10

−5

0

5

10

15

20

Nyquist array 1,1

Real axis

Im
ag

in
ar

y
 a

x
is

Rigid body modes

Flexible modes

Figure 5.26 Gershgorin Circles on 1,1 Nyquist array plot

−20 −10 0 10 20 30 40
−25

−20

−15

−10

−5

0

5

10

15

20

25

Nyquist array 2,2

Real axis

Im
ag

in
ar

y
 a

x
is

Figure 5.27 Gershgorin Circles on 2,2 Nyquist array plot

Stability 75



Definition: Stability in the sense of Lyapunov
The equilibrium point xe¼ 0 of system _x ¼ f ðxðtÞ, tÞ is stable in the sense of Lya-
punov at time t¼ t0 if for any [ > 0, there exists a d(t0, [) > 0 such that ||x(t0)|| <
d(t0, [) ) ||x(t)|| < [, 8t � t0. If the condition is satisfied for d independent of initial
time t0, the equilibrium point is said to be uniformly stable in the sense of Lyapunov.

The trajectory of a system that is stable in the sense of Lyapunov will stay
within a ball around the origin if it starts within another ball around the origin. In
other words, this type of system will not take off to infinity if it starts sufficiently
close to the equilibrium point. This is analogous to the zero input response of a
marginally stable linear system defined in Section 5.2, which is sometimes referred
to as stable in the sense of Lyapunov. There is no guarantee of exponential,
asymptotic, or any convergence to the origin. For most control applications, this
characteristic is not acceptable as there is interest in driving the output error to zero.

Definition: Asymptotic stability
The equilibrium point xe¼ 0 of system _x ¼ f ðxðtÞ, tÞ is asymptotically stable at
time t¼ t0 if xe is stable in the Lyapunov sense and 9 d(t0) ] ||x(t0)|| < d(t0) ) lim(x
(t))¼ 0 as t ? ?. If the equilibrium point is uniformly stable in the sense of
Lyapunov, there exists d satisfying the condition independent of t0, and the con-
vergence is uniform, then xe is said to be uniformly asymptotically stable.

Clearly, asymptotic stability (particularly uniform asymptotic stability, where
the stability of the equilibrium point is guaranteed) is a goal more appropriate for
control applications than stability in the Lyapunov sense. However, there is no
quantification of the convergence rate.
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Figure 5.28 Characteristic loci for the vibration suppression controller
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Definition: Exponential stability
The equilibrium point xe¼ 0 of system _x ¼ f ðxðtÞ, tÞ is exponentially stable if 9 con-
stants a, a > 0, 2 > 0 3 jjxðtÞjj � ae�aðt�t0Þjjxðt0Þjj 8 jjxðt0Þjj � 2 and t � t0. The
largest nonnegative constant a that satisfies this condition is the rate of convergence.

Autonomous systems that satisfy the stability condition are obviously uniformly
stable. Systems that satisfy the equality conditions for all x0 [ <n are globally stable.

5.9 Direct method

Consider a control problem where a function yielding a measure of error or energy
in the system has been defined. Clearly, it is a good result if these quantities
decrease with time. Lyapunov’s direct method involves the determination of the
rate of change of error or energy (power) to assess stability.

Definition: Locally positive definite function
Continuous function V : <n�<þ ? < is positive definite (locally) if in some
neighborhood of the origin x [ {x [ <n : ||x|| < [} ([ > 0) and a continuous, strictly
increasing function a : <þ ? <, V(0, t)¼ 0 and V(x(t), t) � a(||x(t)||) 8t � 0.

If this condition is satisfied with a(||x(t)||) ? ? as ||x(t)|| ? ?, the function is
referred to as globally postive definite, or simply positive definite.

Definition: Locally negative definite (decrescent) function
Continuous function V : <n�<þ? < is negative definite if in some neighborhood
of the origin x [ {x [ <n : ||x|| < e} (e > 0) and a continuous, strictly increasing
function b : <þ ? <, V(x(t), t) � b(||x(t)||) 8t � 0.

Theorem: Lyapunov
Function V(x(t), t) is a nonnegative function.

Local stability in the sense of Lyapunov
If V(x(t), t) is locally positive definite and _V ðxðtÞ, tÞ � 0 locally in x, 8t, then
the origin is locally stable in the sense of Lyapunov.

Uniformly locally stable in the sense of Lyapunov
If V(x(t), t) is locally positive definite and descresent, and _V ðxðtÞ, tÞ � 0 locally
in x, 8t then the origin is uniformly locally stable in the sense of Lyapunov.

Uniformly locally asymptotically stable
If V(x(t), t) is locally positive definite and descresent, and � _V ðxðtÞ, tÞ is locally
positive definite, then the origin is uniformly locally asymptotically stable.

Uniformly globally asymptotically stable
If V(x(t), t) is positive definite and descresent, and � _V ðxðtÞ, tÞ is positive
definite, then the origin is uniformly globally asymptotically stable.

For an autonomous system, _x ¼ f ðxÞ, and continuously differentiable function,
V(x), mapping a domain D containing the origin to real numbers, if V (0)¼ 0, V (x) > 0
for all x 2 D \ 0 and _V ðxÞ � 0 for all x [ D, then the origin x¼ 0 is stable in the
sense of Lyapunov. If _V ðxÞ < 0 for all x 2 D \ 0, the origin is asymptotically stable.
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5.10 Case study: set point control of a parallel robot

Lyapunov stability theory is applied to the set point control problem for parallel
robots. The goal of this controller is to transfer the robot from one pose (defined
as the combination of position and orientation of the end-effector) to another.
The trajectory of the robot as it transfers from the initial configuration to the
desired set point is not directly controlled. Although the position of the end-effector
is straightforward to describe in Euclidean 3-space (p [ <3), the orientation is
somewhat more complicated. Three-parameter (e.g. roll–pitch–yaw angles), four-
parameter (quaternion), and matrix exponential representations of orientation can
be used to describe orientation.

In this case study, a nonlinear kinematic set point control system is developed
using the Lyapunov Theorem. This controller is applied to the planar Stewart
Platform shown in Figure 5.29, and Seoul National University’s Eclipse (Figure 5.30)
parallel mechanisms.

5.11 Kinematic set point control

The velocity kinematics of a parallel robot are described by

w
_p

� �
¼ J T

_qa ð5:43Þ

where w and _p are three-parameter variables in end-effector rotation and translation
velocities, respectively; _qa is a vector of active joint velocities; and J T is the
composite manipulability Jacobian matrix found by solving for passive joint
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Figure 5.29 The Planar Stewart Platform
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velocities using the contact constraint equations. Using this mapping, a set-point
kinematic control problem is proposed. Choose

_qa 3 ðR, pÞ ! ðRd , pdÞ ð5:44Þ

The pairs (R, p) and (R, p) denote the initial and final configurations of the robot.
The orientation is described by R [ SO(3)¼ {R [ <3� 3 : RRT¼ I, det(R)¼ 1}
and the position by p [ <3. The end-effector error position is

ep ¼ 1
2
jjp � pd jj2 ð5:45Þ

Obtaining an error function for the rotational pose component is somewhat less
straightforward. The following are several candidate functions:

eR ¼ 1
2

trððS� IÞTÞðS� IÞÞ ð5:46Þ

eR ¼ 1
2

trððS1
2 � IÞTÞðS1

2 � IÞÞ ð5:47Þ

eR ¼ 1
2
jjP�jj2 ð5:48Þ

eR ¼ 1
2
jjqjj2 ð5:49Þ

where S¼RTRd [ SO(3), q is the vector quaternion, and Pe is any three-parameter
representation of orientation (Euler angles, Gibb’s vector, etc.). Using a three-
parameter representation of orientation as in (5.48) is numerically expeditious, yet
will always contain a representation singularity that can be confused with
mechanism singularity.
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Figure 5.30 Seoul National University’s Eclipse 5-face machining robot
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A positive definite Lyapunov function is constructed via the sum of (5.45) and
(5.49).

V ¼ ep þ eR ð5:50Þ

The time derivative of (5.50) is

_V ¼ DpT _p þ 1
2

sin
f
2

cos
f
2

kTw ¼ DpT _p þ sTw ð5:51Þ

where f is the relative angle about the unit length axis of rotation k, and the 3� 1
vector of reals, w, is the task space angular rate. Applying the assumption that the
mechanism is not at an unstable singularity (but could be in the close neighbor-
hood), (5.51) is rearranged and combined with (5.43).

_V ¼ s
Dp

� �T w
_p

� �
¼ s

Dp

� �T

J T
_qa ð5:52Þ

5.11.1 Kinematic control law
The manipulable variable, _qa, is now driven by an appropriate control function.
Candidate control laws are

_qa ¼ �J T
yKp

s
Dp

� �
ð5:53Þ

and

_qa ¼ �J T
T Kp

s
Dp

� �
ð5:54Þ

where Kp is a diagonal matrix of proportional gains. Applying (5.53) or (5.54) to
(5.52) gives a negative definite quadratic function, thus both controllers are
asymptotically stable with the stipulation that the mechanism is fully manipulable
over the entire trajectory, i.e. J T is well conditioned.

5.11.2 Examples of kinematic set point control
Set point control is applied to the Planar Stewart Platform and the Eclipse
Manipulator. The trajectories do not include unstable singular configurations,
which will be addressed in a later chapter.

Planar Stewart Platform
The PSP is tasked to move from px¼�0.5, py¼ 1, q ¼ �p

4, to pxd ¼ 0:5, pyd ¼
1:5, qd ¼ p

4. The pseudoinverse control law (5.53) is implemented with Kp¼ 50I.
The resulting trajectory and normed pose error are shown in Figures 5.31 and 5.32.

Eclipse Manipulator
The Eclipse is tasked to move from an initial pose (end-effector frame position and

ZYX Euler angles relative to the base frame) p ¼ ½0:1 0:05 0:01 �T ,q¼ ½0 p
12 0 �,
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Figure 5.32 PSP: normed pose error using pseudoinverse set point
control
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to pd ¼ ½�0:03 0:02 0:1 �T , qd ¼ ½p6 p
6 �p

3 �T . Equation (5.53) is used with

Kp¼25I. The normed pose error 1
2 jjDpjj2 þ 1

2jjqjj2 is shown in Figure 5.33.

5.11.3 Effect of mechanism singularities on the kinematic
set point controller

The pseudoinverse controller of (5.53) is ill-posed at unmanipulable singularity
thus we consider the transpose controller of (5.54) in this section.

Unmanipulable singularity
At unmanipulable singularity, (5.52) is zero if the pose error is in the null space of
the composite Jacobian. In this condition, the mechanism stops away from the set
point.

Unstable singularity
At unstable singularity, (5.52) will have a nonzero drift term.

s
Dp

� �T

ðJ T
_qa þ ~xÞ ð5:55Þ

The mechanism is uncontrollable at this pose. In the close neighborhood of
unstable configurations, the maximum singular value of J T

T becomes very large,
and the magnitude of (5.54) becomes prohibitive.
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Figure 5.33 Eclipse: normed pose error with pseudoinverse set point controller
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5.12 Absolute stability

While linear feedback system stability theory is elegant and easy to implement, it
does not address many aspects of control applications, perhaps most critically the
effect of nonlinearities on the stability of the control system. Every control
application involves actuators, and every actuator has limits (saturation). An
obvious question is: If a linear control system is determined to be stable using the
Nyquist Stability Criterion, what is the effect of particular nonlinearities in the loop
on the system’s stability?

Definition: Sector condition
Nonlinearity f(t, y) : [0, ?) � < ? < satisfies the sector condition if 9a1,
a2 such that a1y2 � yf(t, y) � a2y2, 8t � 0, 8y [ <, where a2 > a1.

It might be the case that this sector condition is only satisfied locally in the
interval y [ (b1, b2), b1 < 0 < b2, the sector condition is said to be satisfied locally
(as opposed to globally).

Definition: Sector condition (2)
Memoryless nonlinearity f(t, y) : [0, ?) � <p ? <p satisfies the sector condition
(said to belong to sector [Kmin, Kmax]) if

½fðt, yÞ � Kminy�T ½fðt, yÞ � Kmaxy� � 0, 8t � 0, 8y 2 G 	 <p ð5:56Þ

for real matrices Kmin, Kmax of sector lower and upper slopes (so K¼Kmax � Kmin > 0).
The set G has a connected interior that contains y¼ 0. If G¼<p, the nonlinearity
belongs to this sector globally.

Consider a regulator (reference input is zero) consisting of a feedback con-
nection of an LTI strictly proper system G(s)¼C(sI � A)�1B in the forward path,
and a nonlinear element f(t, y) in the feedback path depicted in Figure 5.34. The
feedback system is represented by

_xðtÞ ¼ AxðtÞ � Bfðt, yÞ ð5:57Þ
yðtÞ ¼ CxðtÞ ð5:58Þ

It is assumed that the matrix pairs (A, B) and (A, C) are controllable and observable,
respectively, and f satisfies the sector condition.

G(s)

Plant

y
Output

–

Nonlinearity

phi(t, y)

Figure 5.34 Linear system in feedback connection with a nonlinear system
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Definition: Absolute stability
If the origin of system (5.57) is uniformly asymptotically stable for all non-
linearities in the sector that f belongs to, the system is absolutely stable. If f
satisfies the sector condition globally, the feedback system is globally absolutely
stable, otherwise it is absolutely stable on a finite domain.

Lemma: Positive Real Lemma
Consider square transfer matrix Z(s)¼C(sI � A)�1B þ D, with all eigenvalues of
A having negative real parts, and matrix pairs (A, B) and (A, C) controllable and
observable, respectively. Z(s) is strictly positive real if and only if there exists a
positive definite symmetric matrix P, matrices W and L and positive constant e
such that

PA þ AT P ¼ �LT L � eP ð5:59Þ
PB ¼ CT � LT W ð5:60Þ
W T W ¼ D þ DT ð5:61Þ

See Khalil for the proof of this lemma, also referred to as the Kalman-Yakubovich-
Popov Lemma.

5.12.1 Circle Criterion
Given system (5.57) where f(t, y) satisfies the sector condition with Kmin¼ 0, and
all eigenvalues of A having negative real parts. In this case, the sector condition
(5.56) is f(t, y)T [f(t, y) � KCx] � 0, 8t � 0, 8y [ G 	 <p, where K > 0 and
symmetric.

A quadratic symmetric Lyapunov function is selected.

V ðxÞ ¼ xT Px ð5:62Þ

where P > 0 is a symmetric matrix to be chosen later. Clearly, V (x) is positive
definite. The derivative of V(x) is

_V ðt, xÞ ¼ _xT Px þ xT _Px þ xT P _x ð5:63Þ
¼ ðxT AT � fT BTÞPx þ xT PðAx � BfÞ ð5:64Þ
¼ xTðPA þ AT PÞx � 2xT PBf ð5:65Þ
� xTðPA þ AT PÞx � 2xT PBf� 2fT ðf� KCxÞ ð5:66Þ
¼ xTðPA þ AT PÞx þ 2xTðCT K � PBÞf� 2fTf ð5:67Þ

The inequality is established by subtracting 2fT (f � KCx) � 0 from _V . The
positive real lemma is now implemented to define a condition of absolute stability.
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Given a symmetric, positive definite matrix P, matrix L and positive constant [
such that

PA þ AT P ¼ �LT L � 2P ð5:68Þ

PB ¼ CT K �
ffiffiffi
2

p
LT ð5:69Þ

Substituting these into the inequality (5.66) yields the following:

_V ðt, xÞ ¼ �2xT Px � xT LT Lx þ 2
ffiffiffi
2

p
xT LTf� 2fTf ð5:70Þ

¼ �2xT Px � ðLx �
ffiffiffi
2

p
fÞT ðLx �

ffiffiffi
2

p
fÞ ð5:71Þ

� �2xT Px ð5:72Þ

So, the derivative of the Lyapunov function is negative definite if matrices exist that
satisfy PA þ ATP¼�LTL � [P and PB ¼ CT K � ffiffiffi

2
p

LT . By the positive real lemma,
this is the case if and only if Z(s)¼ I þ KC(sI � A)�1B is strictly positive real.

Lemma
System (5.57), where all eigenvalues of A have negative real parts, and (A, B) and
(A, C) are controllable and observable, respectively, with nonlinearity f satisfying
f(t, y)T [f(t, y) � KCx] � 0, 8t � 0, 8y [ G 	 <p for symmetric, positive definite
matrix K, is absolutely stable on a finite domain if Z(s)¼ I þ KC(sI� A)�1B is strictly
positive real. If G¼<p, the system is globally absolutely stable (or absolutely stable).

The requirement of open-loop stability can be removed from the lemma using
pole shifting (see Khalil).

5.12.2 SISO case
If the linear system G(s) is SISO (p¼ 1), the conditions of the Circle Criterion are
the following:

1. If 0 < a < b, the Nyquist plot of G(s) does not enter the disk whose diameter
end points are �1

a þ j0 and �1
b þ j0 and encircles this disk anticlockwise

m times, where m is the number of open RHP poles of G(s).
2. If 0 < b, G(s) is stable and the Nyquist plot of G(s) lies to the right of the

vertical line in the complex plane �1
b þ jw, where w [ (�?, ?).

3. If a< 0 < b, G(s) is stable and the Nyquist plot of G(s) is encircled by the disk
whose diameter end points are �1

a þ j0 and �1
b þ j0.

Example: Circle Criterion for a SISO system
The block diagram of a feedback system is shown in Figure 5.35. CðsÞPðsÞ ¼

1000
ðsþ1Þðsþ50Þ. The saturation is a model of the output limits of the actuator. The Nyquist
plot of C(s)P(s) is shown in Figure 5.36. As the Nyquist locus is to the right of the
vertical line s¼�1, the Circle Criterion is satisfied for the sector ½ 0 1 � (satura-
tion nonlinearity belongs to this sector).
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5.12.3 Popov Criterion
Consider the linear system _x ¼ Ax � BfðyÞ, y ¼ Cx with all eigenvalues of A having
negative real parts, and f(y) a time invariant nonlinearity satisfying the sector
condition f(y)T [f(y) � Ky] � 0, 8y [ G 	 <p where symmetric matrix K > 0.
Furthermore,

Ð y
0 fT ðsÞKds � 0, 8y 2 G 	 <p. The Lure-type Lyapunov function is

applied.

V ðxÞ ¼ xT Px þ 2h
ðy

0
fTðsÞKds ð5:73Þ

where P is a symmetric, positive definite matrix, and h is a nonnegative constant to
be chosen. A similar approach that is used in the prequel is applied to find the
sufficient condition of absolute stability, the Popov Criterion.

Theorem
Consider the system G(s)¼C(sI � A)�1B where all eigenvalues of A have negative
real parts, (A, B) and (A, C) are controllable and observable, respectively, input is

C(s) P(s)

Compensator Plant

y(s)

Output–

Saturation

Figure 5.35 SISO feedback system with an actuator saturation
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Figure 5.36 Nyquist plot of C(s)P(s)
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u¼�fy where f is a time invariant nonlinearity satisfying the sector condition
globally with matrix K > 0, and

Ð y
0 fTðsÞKds � 0, 8y 2 <p. Then the system is

absolutely stable if there exists h � 0 whose negative inverse is not an eigenvalue
of A such that I þ (1 þ hs)KG(s) is strictly positive real. It is absolutely stable in a
finite domain if the sector condition and

Ð y
0 fT ðsÞKds � 0 are satisfied on a subset

of <p.
For the scalar case, Z(s) is strictly positive real if and only if Re[1 þ (1 þ jhw)

kG(jw)] > 0, 8w [ <, equivalent to

1
k
þ Re½GðjwÞ� � hwIm½GðjwÞ� > 0, 8w 2 < ð5:74Þ

If Re[G(jw)] is plotted against wIm[G(jw)], then this condition is satisfied if the plot
lies to the right of the line with x-axis intercept �1

k with slope 1
h. This is the Popov

plot. For h¼ 0, this condition becomes a Circle Criterion condition.
In introducing additional parameter, the Popov Criterion is less conservative

than the Circle Criterion and thus might allow satisfaction of the absolute stability
condition with wider sectors. This is traded with the ease of absolute stability
analysis using the Circle Criterion, which in the SISO case requires nothing more
than the readily available Nyquist plot of the equivalent linear system.

5.13 Exercises

1. The impulse response is g(t)¼ 10e(�2.5tþ5). Is the system BIBO stable? Why?
2. The impulse response is g(t)¼�3e(�0.5t) þ 3.5te(�0.5t). Is the system BIBO

stable? Why?
3. The impulse response is g(t)¼ 10e(�0.5t) þ 20 sin(20t). Is the system BIBO

stable? Why?
4. The impulse response is g(t)¼ 2.5e(0.5t)þ 3.5te(�0.5t). Is the system BIBO

stable? Why?
5. The impulse response is g(t)¼ 10e(�0.5t) þ 3.5te(�0.5t). Is the system BIBO

stable? Why?
6. Is the system with transfer function GðsÞ ¼ 10 sþ1

s2þ23sþ40 stable in the strict
sense, marginally stable, or unstable? Why?

7. Is the system with transfer function GðsÞ ¼ 20 s�1
s2þ23sþ40 stable in the strict

sense, marginally stable, or unstable? Why?
8. Is the system with transfer function GðsÞ ¼ 10 s�1

s2þ10 stable in the strict sense,
marginally stable, or unstable? Why?

9. Is the system with transfer function GðsÞ ¼ 10 sþ1
ðsþ10Þðs2þ23s�10Þ stable in the

strict sense, marginally stable, or unstable? Why?
10. Report a bounded input to GðsÞ ¼ 10 s�1

s3þ16s that yields a bounded output.
Suggest two different bounded inputs that result in unbounded outputs. The
difference in these signals should not simply be amplitude.
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11. Determine if the linear system with state space realization (A, B, C, D) is stable.

A ¼
2:4 1 � 2
1:1 �8 �11
2:3 �1 �10

2
4

3
5, B ¼ 5

1

� �
, C ¼ ½ 3 �2 �, D ¼ 0

12. For the system described in the previous problem: Is (A, B) controllable? Is
(A, C) observable? Is the state space realization minimal?

13. The state matrix is A ¼
7:4 0 �8 � 2
0 �8 �11

2:7 �1 �20

2
4

3
5. Is the system zero input

stable?
14. Two LTI systems are in cascade. G1ðsÞ ¼ 10 s2þ5s�50

s2þ25sþ100 and
G2ðsÞ ¼ 10 sþ85

s3þ5s2�29s�105. Find a state space realization (A, B, C, D) of this
system. Is the realization minimal? Report any hidden modes. Is the system
BIBO stable? Is it zero input stable? Is it internally stable?

15. The loop transmission function is TðsÞ ¼ K sþ15
s2þ25sþ50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

16. The loop transmission function is TðsÞ ¼ K s�15
s2þ25sþ50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

17. The loop transmission function is TðsÞ ¼ K sþ15
ðsþ4Þðs2þ25sþ100Þ. Use the Nyquist

Stability Criterion to determine the set K [ < for which the closed-loop sys-
tem is stable.

18. The loop transmission function is TðsÞ ¼ K �s�1
s2þ25s�50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

19. The loop transmission function is TðsÞ ¼ K sþ1
s2�25sþ50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

20. The loop transmission function is TðsÞ ¼ K s�1
s2�25s�50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

21. The loop transmission function is TðsÞ ¼ K 10
sðs2þ25sþ50Þ. Use the Nyquist Sta-

bility Criterion to determine the set K [ < for which the closed-loop system is
stable.

22. The loop transmission function is TðsÞ ¼ K s
s2þ25sþ50. Use the Nyquist Stabi-

lity Criterion to determine the set K [ < for which the closed-loop system is
stable.

23. The loop transmission function is TðsÞ ¼ K sþ2
s2þ100. Use the Nyquist Stability

Criterion to determine the set K [ < for which the closed-loop system is
stable.

24. Find the gain and phase stability margins for a feedback system with loop
transmission function TðsÞ ¼ K

s2þ20sþ100 for K¼ 10, 200, 2000.
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25. Find the gain and phase stability margins for a feedback system with loop
transmission function TðsÞ ¼ 200 ðs2þ200sþ10, 000Þ

ðsþ20Þðs2þ10sþ100Þ. Is the closed-loop system
stable?

26. The loop transmission matrix is TðsÞ ¼ 100
sþ20

0:1
s2þ2sþ1

1
sþ5

500
s2þ20sþ100

� �
. Determine the sta-

bility of the closed-loop system (if possible) using Gershgorin’s Theorem.
Determine the stability of the closed-loop system using the Generalized
Nyquist Criterion.

27. The loop transmission is TðsÞ ¼ 100
s2þsþ10. There is a nonlinearity in the forward

path. Determine a sector for which the system is absolutely stable using the
Circle Criterion.

28. The loop transmission is TðsÞ ¼ 100
s2�sþ10. There is a nonlinearity in the forward

path. Determine a sector for which the system is absolutely stable using the
Circle Criterion.
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Chapter 6

Feedback design – linear

Good control engineers should be paid by the dB.

– Anonymous

This chapter describes the design process, starting with the determination of the
linear parts of the control system. After this design is complete, requisite nonlinear
compensation is designed and implemented.

The goals of the design of the linear components are large feedback and suf-
ficient relative stability in the nominal operating condition. As was determined in
Chapter 3, characteristics of the system limit the feedback bandwidth. Given a
maximum bandwidth, wb¼ 100 rad/s, and functional bandwidth, w0¼ 1 rad/s, what
should the loop transmission roll-off slope be for a well-designed feedback system?

Consider the loop transmission function frequency response approximation shown
in Figure 6.1. The modulus slope is �6 dB/oct between the functional bandwidth and
the 0 dB crossover frequency. The phase at crossover is approximately �90 degrees,
and thus the phase margin is approximately 90 degrees. The gain margin is infinite.

Now consider the loop transmission function frequency response shown in
Figure 6.2. The modulus slope is �12 dB/oct between the functional bandwidth and the
0 dB crossover frequency. The phase at crossover is slightly greater than�180 degrees,
and thus the phase margin is very small. The gain margin, again, is infinite.

The second system has one more pole at the functional bandwidth frequency of
1 rad/s. With the steeper roll-off, the second system has approximately 40 dB more
feedback over the functional bandwidth. However, it has very low phase stability
margin, and thus excessive positive feedback in the neighborhood of crossover
making the design useless. The first system will be stable. (Note: This system has no
positive feedback at all, and the Bode sensitivity integral does not apply to this type
of system. It is further noted that most practical systems will have a second-order or
steeper roll-off at high frequency.) However, the phase stability margin is excessive
(approximately 60 degrees greater than the Bode minimum). This excessive stability
margin comes at the cost of reduced feedback over the functional bandwidth, redu-
cing the control system’s performance for no practical reason.

If the second-order roll-off is insufficiently stable in a relative sense and the first-
order roll-off has insufficient feedback, then the superior design would have a roll-off
slope between �6 and �12 dB/oct. From the phase/gain relationship for minimum
phase systems described in Chapter 2, a modulus slope of �10 dB/oct has a phase of



�150 degrees. This results in a 30-degree phase margin at crossover. Additionally, if
the plant modulus varies (moderately), the phase margin will be retained. This third
controller is a good compromise between the robustness of the first system and the
aggressiveness of the second system. It does, however, raise a concern from the
perspective of synthesis. Poles contribute phase in integer multiples of �90 degrees.
The second system has one more pole at the break frequency than the first and thus
has 90 degrees less phase at high frequency (in relation to the break frequency). With
a linear compensator modeled by a rational function, how does one realize a modulus
slope in between first and second order?
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Figure 6.1 Loop transmission with a first-order roll-off
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Figure 6.2 Loop transmission with a second-order roll-off
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6.1 The Bode loop response

The material in this chapter focuses on two approaches to linear control design for
high performance. The first is referred to as the Bode loop response, which is seg-
regated over three disjoint frequency intervals. At low frequency, a cascade of
carefully spaced poles and zeros causes a roll-off slope beyond the functional
bandwidth that is a compromise between aggressive feedback application and rela-
tive stability. After crossover, a lead network called the Bode step is employed to
compensate for the lag caused by the aggressive roll-off at frequencies higher than
this lead. This high-order compensator gives large feedback over the functional
bandwidth, with good stability properties with particular plant parameter variations.

6.1.1 Shaping the response below crossover: roll-off slope in
between first and second order

A network pole reduces the loop shape slope by �6 dB/oct, two poles by �12 dB/oct
and so on. A good control design requires a slope in between these. Consider the
following complex function:

Tdes ¼ elogðA0Þþ5
3logqðjf Þ ð6:1Þ

where qðjf Þ ¼ 1ffiffiffiffiffiffiffiffi
1�f 2

p
þjf

, and f is the frequency normalized with respect to

functional bandwidth. The modulus and argument of this function are shown in
Figure 6.3. The modulus is flat to the functional bandwidth, then transitions to a
roll-off of �10 dB/oct. This response has a phase of �150 degrees at all fre-
quencies higher than the functional bandwidth, thus a 30-degree phase margin at
whatever crossover frequency beyond the functional bandwidth. This is a desirable
loop shape for a linear controller.

The synthesis of Tdes is of concern, as it is not a rational function. A constant
slope function can be decomposed into a product of rational and irrational functions
s�p¼ s�ms�q, where m is an integer and 0 < q < 1. The modulus slope of s�q can
be approximated by a network function of appropriately spaced poles and zeros.

q ¼ 6b

a þ b
ð6:2Þ

where a and b are the octave spacing from zero to pole and pole to zero, respectively.
For example, consider a nine-octave interval starting at 0.25 rad/s where the desired
modulus slope is �10 dB/oct. A fourth-order filter is designed to have an approxi-
mately �4 dB/oct roll-off. A zero/pole spacing of one octave is chosen (a¼ 1), so the
pole/zero spacing is two octaves. The filter transfer function is as follows:

TðsÞ ¼ ðs þ 1Þðs þ 8Þðs þ 64Þ
ðs þ 0:25Þðs þ 2Þðs þ 16Þðs þ 128Þ ð6:3Þ

Figure 6.4 shows the frequency response of this system. The roll-off is
approximately �4 dB/oct. To realize the desired �10 dB/oct roll-off, the
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Figure 6.3 Optimal loop transmission shape at frequencies below the crossover
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Figure 6.4 A system with pole zero spacing to approximate a �4 dB/oct
roll-off
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characteristic polynomial of T(s) is augmented with an origin pole. Figure 6.5
shows the frequency response with the desired �10 dB/oct roll-off over the nine-
octave interval.

6.1.2 Shaping the loop response above crossover: high-frequency
slope and the Bode step

Plant parameter uncertainty and sensor noise tend to increase at high frequencies.
To avoid unwanted control action at these frequencies, the feedback compensator
should be designed so that feedback becomes negligible at as low a frequency
beyond crossover as is practical. This requires a high-frequency loop transmission
slope steeper than that between the functional bandwidth and 0 dB crossover.
Typically, this slope is �6n dB/oct, n being an integer of value 2 or greater.
Figure 6.6 shows a partial loop transmission function with a 0 dB crossover frequency
of fb and a high-frequency roll-off break frequency of fc. The modulus slope is
�12(1�y) dB/oct (for a �10 dB/oct roll off, y ¼ 1

6) below fb and �6n dB/oct above fc.
The next design consideration is, given real number y and integer n, to shape

the response between frequencies fb and fc. The modulus slope at low frequency,
defined by y, is selected for the combined goal of feedback at low frequency and
adequate phase stability margin. The increase in the steepness of the slope at fre-
quencies higher than fc has the deleterious effect of decreasing the phase at lower
frequencies. As such, the transition between fb and fc should provide phase lead to
counteract this.
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Figure 6.5 A system with pole zero spacing to approximate a �10 dB/oct roll-off
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Figure 6.7 shows the loop transmission with a lead transition between fb and fc.
The slope of �12(1 � y) dB/oct is retained until fd, where the modulus is �x dB to
frequency fc. This lead is called the Bode Step, which compensates for the phase
delay of the high-frequency roll-off and time delay.

Phase delay due to time delay increases linearly with frequency. The designer
should not attempt to compensate for this with lead systems at frequencies where
the phase delay due to time delay is large, as the loop gain increase will tend to

f (H)z

|T | (dB)

0 fb fc

–12(1–y) dB/oct

–6n dB/oct

Figure 6.6 Partial loop transmission

fcfb

fd

|T | (dB)

f (Hz)
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–6n dB/oct

–x

Figure 6.7 The Bode step
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destabilize the system. A good rule of thumb is to limit the nonminimum phase
delay at fc to |Bn(fc)| < 1 rad. For a time delay of td, the maximum fc is approxi-
mately 0:16 1

td
. The nonminimum phase lag at frequency f < fc can be approximated

as follows:

Bn � jBnðfcÞj f

fc
ð6:4Þ

Recall from the discussion of the Bode phase/gain relationship in Chapter 2 that the
phase delay from n poles at fc at f < fc can be approximated by 2

p n f
fc
.

Consider the discarded ray in Figure 6.7. The approximate phase delay from
this ray at f < fd is 2

p 2ð1 � yÞ f
fd

. This is the desired phase delay of the complete loop
transmission at these frequencies (effectively equivalent to the loop shape with
constant slope �12(1 � y) dB/oct at all frequencies). Equating this phase delay to
the combined delay from nonminimum phase and the high-frequency roll-off gives
the required Bode step width fc

fd
.

2
p

n
f

fc
þ jBnðfcÞj f

fc
� 2

p
2ð1 � yÞ f

fd
ð6:5Þ

fc

fd
� n þ p

2jBnðfcÞj
2ð1 � yÞ ð6:6Þ

Example: The crossover frequency is fb ¼ 100 Hz. The high-frequency roll-off
slope is to be �18 dB/oct. The loop transmission slope at low frequency is to be
�10 dB/oct. The Bode step gain is to be �6 dB. There is no nonminimum phase
delay. Design the Bode step.

The low-frequency roll-off is �10 dB/oct, so y ¼ 1
6. The high-frequency roll-off

is �18 dB/oct, so n ¼ 3. For a Bode step gain of �6 dB, the �10 dB/oct roll-off is
maintained to fd, where log2ðfd

fb
Þ ¼ 6

10, or fd ¼ 1.52, fb ¼ 152 Hz. Since there is no
nonminimum phase, the Bode step width is fc

fd
� 3

2ð1�1
6Þ
¼ 1:8 and fc ¼ 274 Hz.

The Bode step is a lead and as such increases the loop gain at frequencies
higher than crossover. This feature is a potential stability threat if there are
unmodeled dynamics at frequencies in the neighborhood of the step. As such, the
width should be designed only as wide as is necessary to compensate for the phase
delay of the high-frequency slope.

6.1.3 The complete loop shape
Figure 6.8 shows the loop transmission designed for a particular functional band-
width. A complex function similar to (6.1) is used to shape the loop response over
the functional bandwidth. In doing so, the feedback over the functional bandwidth
can be increased by the gain reduction over one octave in the roll-off. For example,
if the loop transmission roll-off slope is �10 dB/oct beyond the functional band-
width, the feedback over the functional bandwidth is increased by 10 dB using this
method of loop shaping. Of course, a rational function with appropriately spaced
poles must be found to approximate the frequency response of this complex
function.
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It is evident that a well-shaped loop transmission requires a much higher order
feedback compensator than more commonly implemented controllers. It is common
for this type of compensator to be of order greater than 10, high when compared to a
PID-type controller that, depending on additional high-frequency filtering, is typi-
cally of order 1–3. This disparity is of little concern, as increasing compensator order
constitutes no significant increase in cost. A few more analog filters or a few more
terms in a difference equation are insignificant compared to the increase in perfor-
mance that a well-shaped compensator provides over common, low-order controllers.
As such, a control designer should always endeavor to carefully shape the loop
response to provide maximum feedback subject to bandwidth limitations.

6.1.4 Case study: loop shaping
Wind turbines are nonlinear systems, with characteristics that substantially restrict
the available control system feedback: variable plant parameters, nonminimum
phase zeros, adjacent pole pairs at low frequency, actuator delay and other limiting
factors. Control performance, particularly in Region 3 (beyond rated wind speed),
is critical, as the forces applied can severely reduce turbine lifetime.

The US Department of Energy suggests wind power capacity will increase by
roughly an order of magnitude (305 GW) by 2030 [69]. To meet this goal, deployed
turbines must be substantially larger than what are deployed today. In Reference 70,
it is stated that 5 MW turbines or larger are needed to meet the goals of the 2030
report. These turbines will have hub heights of 140 and 153 m rotor diameters.
Comparing this with the 80 m hub heights and 77 m rotor diameters of currently
deployed 1.5 MW turbines prompts two questions related to automatic control
applications for these plants: What control performance is required for these 5 MW
turbines and what control performance is available?

f (Hz)

|T | (dB)

0.5f0 f0

Figure 6.8 The complete loop response
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For a constant torque wind turbine, Region 3 control has the primary goal of
generator rate regulation. A low variance of this output is desired. Upper bounds on
rate amplitude also apply subject to the limitations of the turbine power electronics.
Ancillary Region 3 goals are related to load mitigation. This includes the use of
variable blade pitch to damp tower modes and the use of generator torque to damp
the shaft torsion mode.

Control performance is directly proportional to feedback, which in turn is a
function of the available control bandwidth. Some plant characteristics, like flex-
ible body dynamics and nonminimum phase, have the effect of reducing available
bandwidth. It is expected that the flexible modes of proposed very large wind
turbines (5 MW and larger) will be at lower frequencies than those of current
turbines, and thus the available feedback is less. It is expected that the maximum
blade angle rates will be lower than those of smaller turbines, also limiting the
available control performance due to saturation. As a consequence, it is expected
that the available control performance for the 5 MW turbines is less than that of
current systems.

Control architecture
The goals of the control design are twofold. The primary goal is turbine shaft rate
regulation in Region 3 (CART2 is a constant torque wind turbine, and for purposes
of this comparison, the 5 MW wind turbine is assumed to be constant torque as
well). Second, flexible body modes are targeted for feedback application for load
mitigation. The control variables are collective blade pitch and generator torque.
The outputs are high-speed shaft rate and tower fore/aft acceleration. These are
variables in two control systems: a single-input, single-output controller (generator
torque input and high-speed shaft rate output) and a single-input, two-output
(SITO) controller (collective blade pitch input and high-speed shaft rate and tower
fore/aft acceleration are outputs). Figure 6.9 shows the block diagram for this
controller.

The generator and the high-speed shaft are collocated and the frequency
responses for both the CART2 (Figure 6.10) and the 5 MW turbine consist of
alternating zero/pole pairs that facilitate high-performance feedback design due to
phase constraints. Low-order feedback compensation for both turbines results in
more than 20 dB attenuation of shaft vibrations at the modal frequency. This con-
trol has the added benefit of reducing the modulus of the high-speed shaft response
to collective blade pitch, making easier the task of gain stabilization of that mode in
the shaft rate regulation design problem.

The design of the collective blade pitch controller is more challenging and is
the focus of this comparative analysis. The plant is SITO; the two outputs are high-
speed shaft rate for the Region 3 regulation problem (primary) and tower fore/aft
acceleration for the vibration suppression problem (secondary). In contrast to the
generator/high-speed shaft rate frequency response, the collective blade pitch
responses present challenging design problems and it is this controller that distin-
guishes the two turbines from the perspective of available performance.
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The comparative analysis is presented thusly:

1. Limitations to available feedback for the SITO collective blade pitch controller
are identified and quantified for both the CART2 and 5 MW wind turbines.

2. The same loop transmission shape is applied to both the CART2 and 5 MW
high-speed shaft rate control design that produces robust, high performance,
linear control.

3. Using 1 and 2, the available feedback over a chosen functional bandwidth for
both turbine control designs is calculated and compared.

4. Controller designs for both systems are developed and the performance is
compared using the National Renewable Energy Laboratory’s FAST (Fatigue
Aerodynamics Structures and Turbulence) simulations of both wind turbines.
These results are compared to the trend indicated in 3.

It is assumed that adequate driveshaft vibration attenuation is achieved via simple
generator torque control, and details of this design are not included in the com-
parative analysis.

Comparison of available feedback: CART2 versus 5 MW
The performance difference between the collective blade pitch control performance
of the 600 kW and 5 MW wind turbines is quantified. The following conditions
apply to both systems:

1. The plant is two-output: high-speed shaft rate and tower fore/aft acceleration.
2. The control system is linear.
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Figure 6.10 CART2 generator torque to high-speed shaft rate frequency response
at 18 m/s
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3. The blade pitch rate is limited. 20 deg/s for CART2 and 8 deg/s for the 5 MW
turbine.

4. The functional bandwidth, defined as the frequency to which the loop trans-
mission has a constant magnitude A0, is 0.1 rad/s. This allows more than one
decade for the loop transmission roll-off.

5. The loop transmission roll-off at frequencies higher than the functional band-
width is �10 dB/oct. This approach combines aggressive feedback delivery
with good robustness (�150 degree phase after the break).

6. If there are x octaves between the functional bandwidth and the 0 dB crossover
frequency, then the loop transmission modulus over the functional bandwidth
is 10(x þ 1) dB. This additional 10 dB of feedback is extracted by careful loop
shaping at the functional bandwidth break and near 0 dB crossover.

The desired loop transmission function is given by equation 6.1 where
qðjf Þ ¼ 1ffiffiffiffiffiffiffiffi

1�f 2
p

þjf
and f is the frequency normalized with respect to functional

bandwidth. Figure 6.11 shows the modulus and argument of this function. Imple-
mented controllers will be defined by rational functions with poles and zeros
selected to approximate this shape.

Available feedback for the CART2 Region 3 high-speed shaft rate regulator
Figures 6.12 and 6.13 show the CART2 high-speed shaft rate and tower fore/aft
acceleration responses to collective blade pitch at 18 m/s wind speed, found using
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Figure 6.11 Desired loop transmission as a function of frequency normalized with
respect to functional bandwidth

102 Frequency-domain control design for high-performance systems



10–2 10–1 101100 102

0

20

40

60

80

100
M

ag
n
it

u
d
e 

(d
B

)

−360

0

360

720

1080

P
h
as

e 
(d

eg
)

Collective blade pitch−rotor rate 18 m/s

Frequency (rad/sec)

First blade edgewise mode 

First tower side−to−side mode

Figure 6.12 CART 2 collective blade pitch to high-speed shaft rate frequency
response at 18 m/s

10–2 10–1 101100 102

−100

−50

0

50

M
ag

n
it

u
d
e 

(d
B

)

0

180

360

540

720

900

P
h
as

e 
(d

eg
)

Collective blade pitch−tower F/A acceleration 18 m/s

Frequency (rad/sec)

First tower fore/aft mode

Blade flap modes

Figure 6.13 CART 2 collective blade pitch to tower fore/aft acceleration
frequency response at 18 m/s

Feedback design – linear 103



the FAST model of this turbine. These plots are used to determine the feedback
limitations for the high-speed shaft rate controller, the primary controller for this
application.

1. There is substantial nonminimum phase in the neighborhood of the first
tower mode at 5.5 rad/s of the shaft rate response (Figure 6.12). This is the
result of right-half plane zeros clustered near the first tower fore/aft and
side-to-side modes at this frequency. The nonminimum phase delay at this
frequency makes impossible the design of a shaft rate controller of higher
bandwidth.

2. There must be at least one octave of separation between the frequencies where
the high-speed shaft rate is negative and where the acceleration feedback is
negative.

3. The first blade edgewise mode at approximately 70 rad/s in the shaft rate
response must be either gain or phase stabilized. The drivetrain mode at
22 rad/s is reduced by the generator controller; however, the collective blade
pitch controller will stabilize this mode in case the generator loop is opened.

Items 1 and 2 are the most substantial limitations. The nonminimum phase
at 5.5 rad/s described in item 1 requires gain stabilization of modes near this
frequency. This limits the bandwidth of the high-speed shaft rate controller to
~1–2 rad/s. Control of the first tower fore/aft mode (5.5 rad/s) requires acceleration
feedback over the interval [4 6] rad/s, thus the restriction of item 2 limits the
high-speed rate feedback loop to 2 rad/s. The bandwidth limit caused by item 3 is
higher than those of 1 and 2 and is thus not a critical limitation.

The crossover frequency is ~1.5 rad/s. The interval from the functional band-
width (0.1 rad/s) to the crossover frequency of 1.5 rad/s is 3.9 octaves wide.
Assuming careful loop shaping at the break, the high-speed shaft controller can
deliver 10(3.9 þ 1) ¼ 49 dB of feedback over the functional bandwidth.

Available feedback for the 5 MW Region 3 high-speed shaft rate regulator
Figures 6.14 and 6.15 show the 5 MW high-speed shaft rate and tower fore/aft
acceleration responses to collective blade pitch at 18 m/s wind speed. These plots
are used to list the feedback limitations for the high-speed shaft rate controller.

1. There is substantial nonminimum phase in the neighborhood of the first tower
mode at 2 rad/s of the shaft rate response (Figure 6.14). This is the result of
right-half plane zeros clustered near the first tower fore/aft and side-to-side
modes at this frequency. The nonminimum phase delay at this frequency
makes impossible the design of a shaft rate controller of higher bandwidth.

2. There must be at least one octave of separation between the frequencies where
the high-speed shaft rate is negative.

3. The first blade edgewise mode at approximately 25 rad/s in the shaft rate
response must be stabilized (either gain or phase). The drivetrain mode at
10 rad/s is attenuated by the generator controller; however, the collective blade
pitch controller will stabilize this mode in case the generator loop is opened.
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As is the case for CART2, items 1 and 2 are the most substantial limitations.
While this response does not have the sharp poles that CART2 has around
2 rad/s, the nonminimum phase at this frequency described in item 1 requires
gain stabilization of modes near this frequency. This limits the bandwidth of the
high-speed shaft rate controller to ~0.5–1 rad/s. Control of the first tower fore/aft
mode (2 rad/s) requires acceleration feedback over the interval ~[1 4] rad/s, thus
the restriction of item 2 limits the high-speed rate feedback loop to 0.5 rad/s.
The driveshaft and edgewise modal frequencies are high enough so that item 3 is
not a limitation.

The crossover frequency is ~0.5 rad/s. The interval from the functional band-
width (0.1 rad/s) to the crossover frequency of 2 rad/s is 2.3 octaves wide.
Assuming careful loop shaping at the break, the high-speed shaft controller can
deliver 10(2.3 þ 1) ¼ 33 dB of feedback over the functional bandwidth.

The more substantial limitations of the 5 MW turbine result in a factor of
approximately six times less rate regulation performance than the CART2,
theoretically.

6.2 Phase stabilization

A given linear, time invariant single-input, single-output (LTI SISO) frequency
response of a stable plant is shown in Figure 6.16. The �180 degree phase con-
tribution of the mode at 100 rad/s represents a potential feedback stability risk. The
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Figure 6.16 A plant frequency response with a lightly damped flexible mode
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control design could reduce loop gain at the modal frequency (T-plane plot is
confined within the unit circle). This is gain stabilization. Low-frequency poles or
notching can accomplish this. Applying a very deep notch at the modal frequency
reduces the gain; however, it is noted that the notch approach is dangerous for high-
quality factor modes with potentially variable natural frequencies (Chapter 2).
Low-pass filtering is a more robust method to gain stabilize the mode, but the
quality factor of the mode is so high that the requisite gain reduction severely
reduces the amount of feedback we can apply at low frequency.

An alternative to gain stabilization is phase stabilization. As opposed to
reducing the gain at the modal frequency to avoid the critical point, the phase
is reduced to rotate the T-plane plot away from the critical point, allowing
greater than unity gain at the modal frequency. The plant Nyquist plot is shown in
Figure 6.17. Note the large loops in the left half plane associated with the flexible
mode that encircle the critical point. The compensator CðsÞ ¼ 1000

s2þ210sþ2000 is
designed for the feedback system. The loop transmission function Nyquist plot is
shown in Figure 6.18. The compensator phase delay rotates the loops away from
the critical point, and the closed-loop system is stable despite the gain at the modal
frequency being greater than one.

Phase stabilization is typically applied to modes beyond the initial 0 dB
crossover, at frequencies where plant knowledge is less than perfect. As such, phase
stabilization should only be implemented at frequencies where there is decent plant
phase knowledge and low phase variation. If there is unexpected plant phase
advance in the neighborhood of the modal frequency, the loop in the T-plane plot
associated with the mode may rotate counterclockwise and encircle the critical
point.
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Figure 6.17 Nyquist plot of plant with flexible modes
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6.3 Nyquist-stable system

The loop transmission shape described in Section 6.1 is a combination of good
performance and robustness that make it an effective design for many LTI SISO
applications. For applications where very large feedback is required, an alternative
to this loop shape is required. Figure 6.19 shows the T-plane plot for a stable loop
transmission function. Note that the plot intersects the negative real axis outside the
unit circle, yet does not encircle the critical point. This is an example of a Nyquist-
stable system. This is not to be confused with a system that simply satisfies the
Nyquist Stability Criterion, which is not sufficient for Nyquist stability. The
Nyquist-stable system has a roll-off greater than �12 dB/oct, then using lead
compensation ‘unwraps’ the Nyquist locus to avoid encircling the critical point.
This very steep roll-off results in more feedback over the functional bandwidth of
the control system.

The Nyquist-stable system, of course, has trade-offs. From the Bode sensitivity
integral, it is clear that this controller will have greater positive feedback that must
be carefully distributed over frequencies where disturbance power is low. A more
severe trade-off is the conditional nature of this system’s stability. The T-plane plot
in Figure 6.19 clearly indicates the system does not satisfy the Circle Criterion for
sector [0 1]. In fact, the Nyquist-stable controller has a tendency for oscillation
when there is a saturation in the loop. The effective drop in loop gain caused by the
saturation reduces the crossover frequency, and the loop outside the unit circle in
Figure 6.19 collapses toward the origin, encircling the critical point.

6.4 Two-input, single-output control

Some control applications require dynamic ranges beyond which a single actuator
can deliver. For instance, consider a position regulator problem where open-loop
output amplitude driven by disturbances is on the order of centimeters, and the
closed-loop output must be on the order of nanometers. To control to such small
amplitudes, the actuator must be very accurate, and as extremely large feedback is
required to achieve this level of disturbance rejection, the actuator must also be
capable of very high bandwidths. So-called ‘smart’ actuators, such as those using
piezoelectric or electrostrictive materials, have these qualities. However, these
actuators are typically capable of tens or hundreds of micrometers of motion,
clearly insufficient to reject disturbances generating centimeters of motion. An
alternative actuator, such as a voice coil, that has the requisite stroke typically will
not have the accuracy or bandwidth to satisfy the requirements of the problem.

The solution is to employ both actuators in a two-input, single-output (TISO),
configuration. The block diagram of such a system is shown in Figure 6.20.
The plant and compensator transfer matrices are P(s) ¼ [p1(s) p2(s)] and C(s) ¼
[c1(s) c2(s)]T, respectively. The fine motion actuator can be considered the primary
actuator (p2(s)), providing the accuracy required. The coarse actuator (p1(s)) serves
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to keep the fine motion actuator from saturating due to the large amplitude
disturbances at low frequency. Alternative compensator architectures include a
cascade connection of c1(s) and c2(s) at the input of coarse actuator.

Consider the response of the TISO system to reference input, r(s), disturbances
at the input of the plant D(s) ¼ [d1(s) d2(s)]T and disturbances at the output of the
plant d(s).

yuðsÞ ¼ PðsÞCðsÞ
1 þ PðsÞCðsÞ rðsÞ ¼ p1ðsÞc1ðsÞ þ p2ðsÞc2ðsÞ

1 þ p1ðsÞc1ðsÞ þ p2ðsÞc2ðsÞ rðsÞ ð6:8Þ

yDðsÞ ¼ PðsÞ
1 þ PðsÞCðsÞDðsÞ

¼ p1ðsÞ
1 þ p1ðsÞc1ðsÞ þ p2ðsÞc2ðsÞ d1ðsÞ

þ p2ðsÞ
1 þ p1ðsÞc1ðsÞ þ p2ðsÞc2ðsÞ d2ðsÞ ð6:9Þ

ydðsÞ ¼ 1
1 þ PðsÞCðsÞ dðsÞ ¼ 1

1 þ p1ðsÞc1ðsÞ þ p2ðsÞc2ðsÞ dðsÞ ð6:10Þ

The loop transmission function is T(s) ¼ p1(s)c1(s) þ p2(s)c2(s) ¼ T1(s) þ T2(s),
a summation of two-loop transmission functions that are shaped for different tasks.
For instance, the coarse compensator c1(s) is designed for large feedback at low fre-
quency, and the fine motion compensator c2(s) provides feedback at high frequency.
This approach prevents the fine motion actuator from saturation due to large dis-
turbances at low frequency and provides high accuracy at high frequency.

It is interesting to note that in a coarse/fine actuation control strategy, only
T2(s) needs to be carefully shaped near unit gain for stability. This is because the
coarse actuator feedback becomes negligible at a frequency where there is still
substantial feedback for the fine actuator (i.e. T(s) � c2(s)p2(s)). As such, only
c2(s) must be carefully shaped for adequate relative stability. However, if T1(s) does
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not satisfy the Nyquist Criterion, then the system stability is threatened if there is a
reduction in the loop gain |T2(s)| (i.e. T(s) � c1(s)p1(s)). This can occur if the
fine actuator saturates, or the fine actuator loop is opened. Another consideration is
the relative phase in the neighborhood of the ‘‘handoff’’ frequency wh where
|T1(jwh)| ¼ |T2(jwh)|. If these functions are out of phase, there is a zero at wh, which
can be problematic. If they are in phase, there is a local boost in modulus that may
not be desirable.

Example: TISO controller
Consider a TISO controller with the following loop transmission functions:

T1ðsÞ ¼ 106

s2ðs þ 10Þ ð6:11Þ

T2ðsÞ ¼ 104ðs þ 1000Þ
sðs þ 100Þ ð6:12Þ

This is typical for a coarse and fine actuator system, where the coarse loop trans-
mission has large gain at low frequency (T1(s)) to desaturate the fine actuator,
whose loop transmission (T2(s)) has a high crossover frequency. Figure 6.21 shows
the frequency response of these loop transmission functions, and the TISO loop
transmission (summation). Note that careful loop shaping for stability is necessary
only for T2(s). Figure 6.22 shows the step response of the closed-loop system.
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6.5 Single-input, two-output control

In the previous section, we consider control designs where two actuators are used to
control one output. Here, we consider the converse (Figure 6.23). These design
problems arise when a single actuator drives two outputs, and it is either not
practical or impossible to introduce a second actuator. P(s) [ F2� 1(s), P(s) ¼
[p1(s) p2(s)]T describes the plant and C(s) [ F1� 2(s), C(s) ¼ [c1(s) c2(s)]
the compensator. Although the system involves a plant with two outputs, the
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Bode/Nyquist methods of stability analysis and performance assessment for SISO
systems can be used for SITO designs. This is because the loop can be opened at the
actuator and the return ratio found at this point, T(s) ¼ C(s)P(s) ¼ c1(s)p1(s) þ
c2(s)p2(s). Using this function, the Nyquist Stability Criterion can be used to assess
the stability of the SITO closed-loop system.

The reference tracking of the SITO controller is now considered.

Y ðsÞ ¼ ðI þ PðsÞCðsÞÞ�1PðsÞCðsÞRðsÞ ð6:13Þ

It is noted that matrix P(s)C(s) is rank deficient, so some reference vectors R(s) ¼
[r1(s) r2(s)]T cannot be tracked. Often the control goal is mixed tracking/regulation,
and this is not an issue. Consider the rejection of disturbances at the input to the
plant. The response Y(s) to disturbance at the plant input, d(s), is

Y ðsÞ ¼ ðI þ PðsÞCðsÞÞ�1PðsÞdðsÞ ð6:14Þ

¼ 1 þ p1ðsÞc1ðsÞ p1ðsÞc2ðsÞ
p2ðsÞc1ðsÞ 1 þ p2ðsÞc2ðsÞ

� ��1
p1ðsÞ
p2ðsÞ

� �
dðsÞ ð6:15Þ

¼
ð1 þ p2ðsÞc2ðsÞÞp1ðsÞ � p1ðsÞp2ðsÞc2ðsÞ

ð1 þ p1ðsÞc1ðsÞÞð1 þ p2ðsÞc2ðsÞÞ � p1ðsÞp2ðsÞc1ðsÞc2ðsÞ
ð1 þ p1ðsÞc1ðsÞÞp2ðsÞ � p1ðsÞp2ðsÞc1ðsÞ

ð1 þ p1ðsÞc1ðsÞÞð1 þ p2ðsÞc2ðsÞÞ � p1ðsÞp2ðsÞc1ðsÞc2ðsÞ

2
664

3
775dðsÞ

ð6:16Þ
The rational functions p1(s)c2(s) and p2(s)c1(s) cross-couple the disturbance at
frequencies where the modulus is large. Consider the condition that the functions
c1(s)p1(s) and c2(s)p2(s) have large moduli over disjoint frequencies. The condition
is an intuitive separation of frequencies where compensator and the plant not
associated with that compensator gains are large. If this condition is satisfied, the
response to the input disturbance is

Y ðsÞ ’
p1ðsÞ

1 þ p1ðsÞc1ðsÞ
p2ðsÞ

1 þ p2ðsÞc2ðsÞ

2
664

3
775dðsÞ ð6:17Þ

The responses are nearly decoupled and are inversely proportional to the feedback in
each channel as two independent SISO systems would be. In contrast to the TISO
system, where overlap of individual loop transmissions is acceptable, the concept of
frequency separation is of paramount importance in SITO control. This involves the
design of two compensators for the two different error signals that deliver negative
feedback over frequency intervals that are disjoint. Failure to design adequate frequency
separation in a SITO control system results in an input to the actuator that is a combi-
nation of corrective signals of two disparate filtered errors. This is related to the concept
of controller/plant alignment, which can have a significant effect on output sensitivity.
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The intuitive notion that SITO systems are more restricted in available per-
formance than TISO systems is supported in this analysis. Frequency separation
reduces feedback, as a single actuator must perform a dual task. As such, SITO
feedback systems trade performance for reduced cost.

Example: SITO control

Consider a SITO plant with a transfer function PðsÞ ¼ 100
s2

1000s2

s3ðs2þ10sþ10;000Þ
h iT

. The

feedback compensator is CðsÞ ¼ 2ðsþ5Þ
sþ20 0:5 ðsþ20Þðsþ200Þ

ðsþ10Þðsþ400Þ
h i

. Figure 6.24 shows the

frequency responses of c1(s)p1(s), c2(s)p2(s) and the SITO loop transmission. Note
the frequency separation of loop gains. The step response of the closed-loop system
is shown in Figure 6.25.

6.5.1 Case study: SITO control of a ship’s rudder
A ship’s rudder couples to both yaw and roll motion, as depicted in Figure 6.26.
In this application, the rudder serves as the actuator in a two-output closed-loop
system with a block diagram shown in Figure 6.27. The rudder to yaw/roll
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Figure 6.24 Frequency responses of C1(s)P1(s), C2(s)P2(s) and the SITO loop
transmission
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plant model is taken from Van der Klugt [76]. Transfer functions from rudder
angle to roll and yaw angles, Gr(s) and Gy(s), respectively, are given below

GrðsÞ ¼ 0:3381s � 0:0169
10s3 þ 2:18s2 þ 4:087s þ 0:3969

ð6:18Þ

GyðsÞ ¼ 0:2106s þ 0:05694
sð16:67s2 þ 11:67s þ 1Þ ð6:19Þ
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The roll plant frequency response is shown in Figure 6.28. The right-half plane
zero at 0.05 rad/s has the capacity to complicate the roll controller design and to
deliver large closed-loop sensitivity at low frequency. As the roll and yaw plants are
coupled, there must be sufficient frequency separation in the individual control loops.

Rudder model
The simplified mathematical model of the rudder control loop of Van Amerongen [72]
is used in this paper. A diagram of this system is shown in Figure 6.29, and a good
description of the steering machine dynamics is given in Reference 75.

The rudder is limited in angle, and the hydraulic steering machine is limited in
rate, the effects of which are modeled as saturations (rudder limiter and rudder rate
limiter, respectively) in Figure 6.29. These saturations limit performance and
potentially threaten the stability of the feedback system. The angle limit in this
paper is 35 degrees. An interval of rudder rate limits is used in the subsequent
analysis.
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Figure 6.28 Roll plant frequency response
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Figure 6.29 Simplified rudder model with angle and rate limits
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Rudder roll stabilization controller
Three principal design issues are considered for the new roll stabilization con-
troller. First, the wave disturbance spectrum is concentrated in the decade from
0.1 to 1 rad/s. This, plus the fact that the actuator is not very effective in frequencies
higher than 1 rad/s, suggests that the maximum available feedback should be
applied in this interval. Second, the coupled yaw and roll plants require frequency
separation between the heading and roll stabilization controllers. The new roll
controller will be designed to cross 0 dB at no less than 0.2 rad/s, which is the best
case scenario. The third consideration is the nonminimum phase zero in the roll
plant. It is fortunate that this zero is two octaves lower in frequency than the
minimum first crossover frequency, as its phase contribution is only about
105 degrees at 0.2 rad/s.

An 8th-order roll stabilizing controller is designed with these three issues taken
into consideration. The gain, zeros, and poles for the compensator Cr are K ¼
79433, sz ¼ (0, �0.6000 � 1.3748i, �0.1800 � 0.2400i, �1.200, �0.5000) and
sp ¼ (�0.05, �2.400 � 3.624i, �0.6000 � 0.8000i, �0.0050 � 0.7000i, �100).
The low-frequency poles and zeros are spaced for a more aggressive roll-up/roll-off
than is available with low-order compensation. A lead is applied to boost the phase
at the second crossover. The simple pole at 100 rad/s reduces loop gain at high
frequency and provides a strictly proper compensator transfer function. Figure 6.30
shows the return ratio of the 8th-order roll controller.

10–2 10–1 100 101

Frequency (rad/sec)

−360

−180

0

180

360

P
h
as

e 
(d

eg
)

Bode diagram

−40

−20

0

20

40

60

M
ag

n
it

u
d
e 

(d
B

) Roll feedback

Heading feedback

Figure 6.30 SITO return ratio

Feedback design – linear 119



6.5.2 Case study: poor application of Nyquist-stable control
Another alternative to improve shaft rate regulation subject to the bandwidth lim-
itations quantified in Section 6.1.4 is to have a steeper roll-off to the crossover
frequency (i.e. roll-off steeper than �10 dB/oct). This provides greater negative
feedback over the functional bandwidth. A Nyquist-stable control system is one
that is stable in closed loop and has a stable loop transmission function that crosses
the negative real axis of the Nyquist plot outside the unit circle. This describes a
loop transmission function that over an interval of frequencies has a modulus slope
steeper than �12 dB/oct. Nyquist-stable controllers have been implemented on
aerospace plants with excellent results [10, 56]. The trade-off for this increased
feedback is a susceptibility to oscillation in actuator saturation. Nonlinear dynamic
compensation can be employed with a Nyquist-stable system to satisfy the condi-
tions of absolute stability [10, 63]. This is discussed in the next chapter.

To test the efficacy of a Nyquist-stable design for the 5 MW wind turbine, a
SISO collective blade pitch/high-speed shaft rate controller with this property
is designed and tested in a turbulent wind environment. This controller has
the advantage of the first tower mode control being abandoned (item 2 from Sec-
tion 6.1.4 is no longer a factor), so the bandwidth can be increased to 1 rad/s.
Figure 6.31 shows the Nichols plots without M-rings for the low-order high-speed
shaft rate feedback only loop transmission and the Nyquist-stable controller.

The Nyquist-stable controller is extremely aggressive. In addition to the steep roll-
off, the stability margins are smaller than those of the SITO rate regulation controller,
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Figure 6.31 5 MW Nyquist-stable loop transmission Nichols chart
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and the torsion mode is phase stabilized as opposed to gain stabilized. These features,
in addition to the extra octave of bandwidth, give the Nyquist-stable controller
approximately 40 dB more feedback at 0.1 rad/s than the SITO rate regulator.

The aggressive features of the Nyquist-stable control system result in poor
robustness. This is a particularly bad characteristic for wind turbine applications, as
the plant dynamics vary with wind speed. Figure 6.32 shows the Nyquist-stable
loop transmission for four different wind speeds in Region 3. While retaining sta-
bility at wind speeds higher than the design speed (18 m/s), there are critical point
encirclements at both the initial crossover and the phase-stabilized torsion mode.
FAST simulations with this controller with turbulent wind frequently show violent
oscillations within 1 min of operation.

The Nyquist-stable robustness problem can be addressed via the application of
gain-scheduling; however, this is an arduous task. In addition to scheduling the
linear controller, requisite nonlinear dynamic compensation for stability retention
in actuator saturation would also have to be gain scheduled. The result would be a
very complicated, perhaps fragile control system. In addition, the increase in per-
formance at low frequency is offset by increased positive feedback near crossover.
The advantages of Nyquist-stable control systems are realized when there is sub-
stantial feedback bandwidth, a characteristic that wind turbines do not have. Thus,
this type of aggressive, nonlinear control (Nyquist-stable control with nonlinear
dynamic compensation) is ill-suited for wind turbines.
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6.6 Exercises

1. If the Bode minimum phase margin is 30 degrees, what is the best loop
transmission modulus slope for a linear feedback system in the interval of
frequencies between the functional bandwidth and the crossover frequency?

2. A control system is designed using the Bode optimal loop shape. The band-
width is 200 rad/s. The functional bandwidth is 0.1 rad/s, with a subsequent
roll-off slope of �8 dB/oct. What is the feedback over the functional
bandwidth?

3. The plant is PðsÞ ¼ 20;000
sðs2þsþ100Þ. The loop transmission gain is flat to 0.1 rad/s.

The 0 dB crossover is 60 rad/s. The high-frequency roll-off is �24 dB/oct.
Design a Bode step at �8 dB for this controller. Report the feedback applied
below 0.1 rad/s. Sketch the Bode and Nyquist plots of the loop transmission
of the controller.

4. The phase shift for a minimum phase system at all frequencies is �200
degrees. What is the gain slope?

5. A feedback control system is designed with the Bode optimal cutoff and a
Bode step. The gain and phase margins are 10 dB and 30 degrees, respec-
tively. The return ratio phase at very high frequency (much higher than the
end of the Bode step) is �270 degrees. The system has a time delay of 1 ms,
causing 0.62 rad of nonminimum phase delay at the end of the Bode step.
What is the crossover frequency of the control system?

6. The control system of the previous problem has 40 dB of feedback over its
functional bandwidth. What is the functional bandwidth?

7. You are to design a tracking control system for a SISO 9th-order plant. The
numerator and denominator polynomial coefficients in descending order are:

Pnum ¼ 1:0e þ 016

0:000000100000000
0:000100210000000
0:004220520000000
0:018922000000000
0:422850000000000
0:130000000000000
2:000000000000000

2
666666664

3
777777775

ð6:20Þ

and

Pden ¼ 1:0e þ 013

0:000000000000100
0:000000000011110
0:000000401127310
0:000004542885340
0:004065517671600
0:005032607312000
0:608953907200000
0:094323200000000
4:608000000000000

0

2
66666666666664

3
77777777777775

ð6:21Þ
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The following are requirements. A functional bandwidth of 10 rad/s is
required. The return ratio does not have to be smooth. Stability must be retained
when the actuator is saturated. The controller must be linear. The transient
response to step commands should be well damped. The effect of sensor noise
should not result in more than 2% peak error in steady-state response to step
command. The following are the details. There is a 0.5 ms time delay. The sensor
noise power spectral density (PSD) is shown in Figure 6.33. You are to design a
control system that satisfies the requirements subject to the details. Provide
evidence of performance and robustness. Be quantitative.

8. The LTI SISO plant transfer function is PðsÞ ¼ 10;000
ðsþ1Þðs2þ2sþ1600Þ. The feedback

bandwidth is 1000 rad/s. Design a compensator C(s) such that the functional
bandwidth is 1 rad/s, the roll-off after 1 rad/s is �9 dB/oct, the gain margin is
9 dB, and the roll-off slope at very high frequency is �18 dB/oct.

9. For the plant of the previous problem, design a Nyquist-stable control system
with the same bandwidth and relative stability. Compare the feedback over
the functional bandwidth of both controllers.

10. Write a Simulink model for the controllers in Problems 2 and 3. The reference
input is the unit step. Add a unit amplitude sinusoidal source to the input of
the plant. This is the disturbance. Plot the responses to the step reference and
sinusoidal disturbances at 0.5, 10, 100, 1000 and 2000 rad/s. Compare the
results.
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11. The mode at 40 rad/s shifts to 80 rad/s. Quantify the effect on the controllers
designed in Problems 2 and 3.

12. The LTI SISO plant transfer function is PðsÞ ¼ 5� 107

ðsþ1Þðs2þ2sþ1600Þðs2þsþ4� 106Þ.
Design a high-performance feedback control system with a functional band-
width of 1 rad/s, and a 0 dB crossover frequency of 500 rad/s. Use phase
stabilization.

13. Design an autopilot for a missile whose dynamics are linearized at a particular
operating point. The block diagram is shown in Figure 6.34 [77]. The missile
should track a 20 g command as fast as is practical, with good transient
response characteristics. Atmospheric disturbances should be well rejected.
There should not be excessive tail fin saturation. Do not pole-zero cancel the
short period mode. The influence of sensor noise should not be excessive.
Provide a complete Simulink model of your design. Provide the loop trans-
mission function plot for your design. Provide a time response of the closed-
loop system (accelerometer output) to the 20 g command with the disturbance
and noise inputs applied. The noise and disturbance models are shown in
Figure 6.35. The saturation limits are �20 degrees. The sensor conversion
constant is k ¼ �0.0012. Plant polynomials are t f ddtn(s) ¼ �469.6s þ
�563.52, t f ddtd(s) ¼ s2 þ 1.27s þ 72.25, azthdn(s) ¼ 0.0021s2 � 2.4273
and azthdd(s) ¼ s þ 1.2.

14. Write a Simulink model to determine the effect of saturation in the actuator 1
in the TISO system described in the example in Section 6.4.

15. The plant is P(s) [ F2� 1(s), PðsÞ ¼ 100
sðs þ 1Þ

1000s2

s3ðs2 þ s þ 40; 000Þ
� �T

:

Design a regulator for this system. Plot the loop transmission function. Verify
sufficient frequency separation.

1

Out1

s2+2*.005*1000s+1000^2

0.01*[1 2*.5*10 10^2]

Transfer fcn2
Band-limited

white noise

1

Out1

s

conv([1 2*1*.3 1^2],[1 2*1*.3 1^2])(s)

Transfer fcn
Band-limited

white noise

Figure 6.35 Missile autopilot noise (top) and disturbance (bottom) models. The
noise power is 0.001 with a sample time of 0.01 s. The disturbance
power is 10 with a sample time of 0.01 s.
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Chapter 7

Feedback design – nonlinear

The controller has more than 100 dB of feedback...but please don’t touch
the plant!

– Anonymous

Frequency-domain techniques for high performance control are introduced in the
previous chapter for single-input, single-output (SISO), single-input, two-output
(SITO) and TISO architectures. Taking into consideration the bandwidth limita-
tions presented by all practical control design problems, these techniques provide
more feedback (thus performance) than commonly used controllers, like
proportional-integral-derivative (PID). The principle trade-off is increased com-
pensator order, which is very inexpensive and well worth the controller perfor-
mance improvement.

It is assumed that the designs discussed in Chapter 6 are applied to linear
systems. Although the control designer may be confident in the accuracy of a lin-
earized model of the system to be controlled, all actuators eventually saturate. The
more aggressive control strategies presented in Chapter 6 drive the actuators harder
than less aggressive controllers, thus increasing the probability of saturation. This is
particularly true of the Nyquist-stable controller that lacks absolute stability (AS) in
the sector 0 1 �½ and is all but guaranteed to go unstable in saturation. These types
of control systems should never be deployed without nonlinear compensation
described in this chapter.

In this chapter, nonlinear methods are discussed to improve the performance of
linear controllers with nonlinearities in the loop. It is the incorporation of these
techniques with those discussed in Chapter 6 that deliver good disturbance rejection
in the small-signal condition, and stability retention in the large-signal condition.

7.1 Anti-windup

Consider a proportional-integral (PI) compensator (C(s)) with a saturation in the
forward path (block diagram shown in Figure 7.1). The saturation limits are those
of the actuator. When the actuator saturates, e(t) builds, and the signal in the inte-
gral branch of the compensator increases until the error changes sign. This is called



integrator windup and is the reason why controllers with integral action recover
sluggishly from saturation.

The anti-windup control input from the integral branch is ui ¼ KI

Ð t
0 eðtÞdt +

Kaw

Ð t
0 esðtÞdt, where KI is the integral gain and Kaw is the anti-windup gain. Signal es

is the difference between the input and the output of the saturation block in the
forward path. When the input is within the range of the actuator, es¼ 0, the control is
the nominal PI controller. Outside the limit, the sign of es is opposite the satu-
rated direction, and the integral action is reduced. The recovery time is thus
reduced.

7.2 Nonlinear dynamic compensation

Nyquist-stable control systems, discussed in Chapter 6, are high-performance
systems but are susceptible to oscillation in saturation. To be feasible in a prac-
tical sense, the Nyquist-stable controller must be augmented with nonlinear
compensation.

Consider a feedback loop with the actuator mathematically modeled by non-
linear function A(u). It is not possible to use linear control theory like the Nyquist
Criterion to determine the stability of this feedback system. Figure 7.2 shows a
modified system with an additional feedback path with a nonlinear link. This is a
nonlinear dynamic compensator (NDC). When A(u)¼ u, the signal through the new
feedback path is zero, and the loop transmission is T(s)¼C(s)P(s). When A(u) = u,
the signal through the new feedback path is nonzero and filtered through N1.

C1 PA(u)

A(u)

N1

– –

–

+

+ u u* y e1 e2

Figure 7.2 The nonlinear dynamic compensator

Compensator Plant

C(s) G(s)
y(s)

Saturation

–
u(s)e (s) 

Figure 7.1 PI compensator with actuator saturation
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The equivalent linear system in feedback with the saturation is as follows:

Teq ¼ PðsÞCðsÞ � NðsÞCðsÞ
1 þ NðsÞCðsÞ ð7:1Þ

This system is in feedback connection to the nonlinearity, as depicted in Figure 7.3.
The system N(s) is be designed such that the equivalent system Teq(s) satisfies the
conditions of absolute stability.

C(s) P(s)

N(s)

–

u(s)

–

+

e1(s) e2(s) y(s)

–
A(u)

Figure 7.3 Equivalent block diagram of feedback loop with NDC

When A(�) is the saturation nonlinearity, a very common case, T(s) is the small
signal loop transmission (in the linear range of the actuator). If the deadzone
interval in the feedback path is equivalent to the linear interval of the saturation in
the forward path, there is an equivalent feedback loop of Figure 7.4. The NDC and
the Nyquist-stable control system is a very effective combination. In the small-
signal condition, the large feedback of the Nyquist-stable controller delivers
excellent disturbance rejection. The NDC retains stability when the actuator satu-
rates, a characteristic the Nyquist-stable system alone does not possess.

e1(s) e2(s)
C(s) P(s)

Compensator Plant 

Dead zone

Saturation

N(s)

–
u(s)

Nonlinear

–

Figure 7.4 Block diagram of a system with actuator saturation and NDC

7.2.1 Case study: nonlinear dynamic compensator design for a
vibration suppression system

The plant is a PUS � RR parallel robot shown in Figures 7.5 and 7.6. One kine-
matic path consists of an active prismatic actuator, universal joint, and sphere joint
(PUS), whereas the other is an active revolute joint in series with a pin joint (RR).
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Actuation
The prismatic actuator is powered by a linear voice coil manufactured by BEI
Kimco Magnetics Division, model number LA28-43-000A. It is capable of
approximately 300 N of force and 3 cm of displacement. The coil is mechanically
in series with helical springs that provide a restoring force to keep the end-effector
centered when unpowered. The coil is driven by an AE Techron LV608 Linear
Power Amplifier operating in a voltage-controlled voltage source mode with a gain
of 30 V/V. The revolute actuator is a standard NEMA 23 sized electric motor by
Techic driven by an SSt-Eclipse digital controller running in torque control mode.
This DOF is not used for the control experiments described in this paper.

Sensing
Attached to the end-effector are two microelectromechanical system (MEMS)
gyros used to measure the angular rate about the two DOFs. These Analog Devices
ADXRS610 300� single-axis gyroscope sensors have an operational bandwidth of
360 Hz. The quiescent noise power spectrum of the gyro, with a peak at 14 kHz,
can be seen in Figure 7.7. A time delay of approximately 0.75 ms � 1/(1.4 kHz) is
observed. Such nonminimum phase delay limits the attainable bandwidth and thus
is not used for closed-loop experimentation.

A Helium Neon (HeNe) laser is used in conjunction with an ON-TRAK Pho-
tonics OT-324 Position Sensitive Detector (PSD) to measure the end-effector
position. The stationary HeNe laser emits a 632.8 nm beam that is directed by
an adjustable steering mirror toward the end-effector. A mirror attached to the
end-effector deflects the beam onto the bare duolateral photodiode sensor of
the PSD. The PSD sensing amplifier reports the position of the laser beam on the

PSD

Revolute

actuator End effector
Prismatic

actuator

Laser

Figure 7.5 PUS � RR parallel robot

{E}

{0}

{2}

{1}

{B}

hx hu1

hu2

θy

d2

y

z

x

Figure 7.6 PUS � RR parallel robot schematic
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two-dimensional sensor as two analog voltages within �10 V. Figure 7.7
shows the quiescent noise power spectrum of the position sensor along one
axis. There are peaks in the position sensors spectra at 120, 240, and 360 Hz.
These harmonics are likely caused by a 120 Hz voltage ripple on the high-voltage
DC line powering the laser that results from rectifying the 60 Hz AC power. The
higher operational bandwidth of nearly 15 kHz and lower noise characteristics
make the PSD better suited than the gyro for the control experiments discussed in
this paper.

System identification
The system is driven by the prismatic actuator with band-limited Gaussian noise
for the purpose of system identification. The drive and PSD signals are digitized and
recorded using an Agilent VXI system. The data capture and processing is performed
using the SignalCalc 6.2 software suite from DataPhysics. Stimuli of varying
amplitudes and bandwidth are applied and the corresponding coherence and plant
transfer functions are calculated. A nominal pole-zero-gain (PZK) model of the plant
is developed by the manual placement of poles and zeros to sufficiently match those
transfer functions with the highest coherence. This 15th-order nominal model P(s) is
plotted along with the experimentally acquired data in Figure 7.8. The gain zeros and
poles of P(s) are K¼ 4.4 � 1020, sz¼ (�5027, �2.482 � 496.4i, �904.8 � 2877i,
�108.1 � 5402i) and sp¼ (�25.13, �24.82 � 495.8i, �301.6 � 402.1i, �1319 �
2285i, �184.7 � 2632i, �257.6 � 5146i, �457.4 � 6518i, �326.7 � 8162i).

The plant transfer function is low-pass as expected. The plant modulus is
relatively flat with a value around 48 dB from 0 Hz to around 4 Hz, at which point
it begins to roll off at approximately 6 dB/oct. At 80 Hz, the slope transitions to
nearly 18 dB/oct, as there are two conjugate pole pairs and one very lightly damped
conjugate zero pair around this frequency. There are interlaced pole/zero pairs
around 440 and 840 Hz. There are consecutive pole pairs at 1 and 1.3 kHz, whose

102 103 104
−100

−90

−80

−70

−60

−50

−40
M

ag
n
it

u
d
e 

(d
B

)

Sensor noise power spectrum

Frequency (Hz)

PSD
Gyro

Figure 7.7 Quiescent sensor noise power spectrum densities

Feedback design – nonlinear 131



additional total phase contribution of �360 degrees places a hard upper limit on
control bandwidth and thus the amount of available feedback. The phase
contributions of the well-damped poles and lightly damped poles around 80 Hz
likewise limit control bandwidth as described.

Absolutely stable fixed gain controller design
An absolutely stable fixed gain (ASFG) controller is designed to serve as a baseline
for comparison to the nonlinear controller described later. The design goal is to
maximize vibration suppression at frequencies below 10 Hz while remaining
absolutely stable. This is accomplished by carefully shaping the compensator
CASFG(s) to obtain the return ratio TASFG(s)¼CASFG(s) � P(s) seen in Figure 7.9.
Similar to the development of the nominal plant model, the PZK model for CASFG is
designed by manually placing poles and zeros (Figure 7.10).

A zero at 4 Hz and a conjugate pair of zeros at 80 Hz compensate for the
corners found in the original plant. A pair of conjugate poles placed at 11 Hz define
the corner of the functional bandwidth around 10 Hz. A pair of zeros at 100 Hz
together with pairs of poles at 160 and 220 Hz define the Bode step. A lead filter
with a zero at 60 Hz and pole at 100 Hz, together with the Bode step, provide
sufficient phase advance around the crossover point. Thus, a gain margin of at least
10 dB and a phase margin of nearly 50 degrees is maintained. This may seem
excessive, but it allows the demonstration of absolute stability (AS) shown later.
The gain, zeros and poles of CASFG(s) are K¼ 196, sz¼ (�25.13, �377, �301.6 �
402.1i, �502.7 � 377i) and sp¼ (�628.3, �41.47 � 55.29i, �502.7 � 870.6i,
�414.7 � 1319i).

A major factor limiting bandwidth is the conjugate zeros near the imaginary
axis and heavily damped poles around 80 Hz. The phase lag of the poles is more
pronounced than the phase lead of the zeros at frequencies below 80 Hz. Thus, the
phase sharply drops to nearly �180 degrees around 80 Hz. There is also uncertainty
in the exact frequency and Q factor of this mode, as it varied between different
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system identification experiments. Thus, the mode is gain stabilized in order
to retain adequate phase margins. The return ratio crosses 0 dB around 33 Hz and
the resulting 7th-order controller provides nearly 18 dB of negative feedback below
10 Hz.

Return ratios TASFG and sensitivities SASFG ¼ 1/(1þTASFG) are also calculated
using the experimentally found plant response data to verify that the final
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compensator design is acceptable when the plant differs from the nominal
model. In all cases, stability is retained and the modulus of positive feedback
(where |SASFG| > 0 dB) is less than 5 dB. Absolute stability of the ASFG controller
is shown in later.

Nyquist-stable controller design
A high-performance Nyquist-stable (NS) controller CNS(s) is also designed with the
goal of maximizing disturbance rejection at frequencies below 10 Hz. By defini-
tion, the return ratio of a Nyquist-stable system has a modulus greater than unity
and phase less than 180 degrees over some interval of frequencies. Furthermore,
since the plant is open loop stable, the Nyquist plot of the return ratio TNS(s)¼CNS �
P(s) must not encircle the �1 critical point. As opposed to the ASFG, however, the
NS controller by itself is not required to be AS.

CNS is designed by carefully shaping the return ratio by direct placement of
poles and zeros. A zero at 4 Hz compensates for the bend in the original plant.
Conjugate pole pairs were placed at 6.75 and 10 Hz to fix the functional
bandwidth at 10 Hz. The pole pair at 10 Hz and a zero pair at 15 Hz were lightly
damped in order to provide the sharp transitions seen in the slope of the return
ratio at 10 and 15 Hz. It is this steep slope and accompanying phase lag that
allows us to attain nearly 20 dB more negative feedback (where |SNS| < 0 dB)
than with the ASFG controller. A pair of zeros at 60 Hz and a pair of poles at
200 Hz flatten the response to produce a Bode step. A two-octave-wide lead
filter centered at 100 Hz further flattens the response and adds phase lead. The
loop is shaped such that the positive feedback never exceeds 6 dB. The gain,
zeros and poles of CNS(s) are K¼ 2119, sz ¼ (�25.13, �314.2, �14.14 � 93.18i,
�188.5 � 326.5i) and sp ¼ (�1257,�33.93 � 25.45i,�12.57 � 61.56i,�1257 �
2177i).

The resulting 7th-order compensator provides nearly 38 dB of disturbance
rejection below 10 Hz as is evident in the Bode plot of the loop transmission
shown in Figure 7.11. This is an order of magnitude greater than the ASFG
controller. The 0 dB crossover frequency is also slightly higher at 44.5 Hz.
As can be seen in Figure 7.12, the return ratio satisfies the Nyquist stability
criterion and the system without saturation is stable in closed loop. However,
no physically realizable system behaves linearly under all conditions. The satura-
tion of large signals is inevitable considering the finite nature of real-world
systems.

Effects of saturation
The plant possesses several saturation mechanisms: the controller analog output
voltage is limited to �10 V, the maximum power output of the Techron amplifier is
only a few hundred watts, the stroke of the prismatic actuator is physically limited,
and the laser beam can only be deflected a few degrees before it misses the target
PSD sensor. To investigate the effects of saturation on the closed-loop system
without driving the hardware to its physical operating limits, an additional saturation
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with an adjustable threshold is added to the controller output. This system is shown in
Figure 7.13. This hard saturation is described by the equation

SðxÞ ¼ tsat � signðxÞ : jxj > tsat

x : otherwise

�
ð7:2Þ
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where S(x) is the saturation link output, x is its input, and tsat is the adjustable
saturation threshold. The values of tsat used during closed-loop experimentation are
sufficiently low so that this link will saturate before any of the other aforemen-
tioned sources of saturation.

Consider a sinusoid of amplitude E fed into a saturation block. For a small-
amplitude sinusoid, E < tsat, the saturation link is equivalent to a unity gain. For a
large-amplitude sinusoid, E > tsat, the output is a waveform of reduced amplitude
but of the same frequency and phase of the input. Thus, a saturation link can
effectively reduce the loop gain for large signals.

Consider the Nichols plots for the ASFG and NS controllers in Figures 7.10
and 7.12. A broadband reduction of the return ratio moduli would result in the plots
shifting down along the amplitude axis. Since |TNS| > 0 dB at some frequencies
where arg(TNS) < �180 degrees, reducing the gain will eventually result in an
encirclement of the critical point and the Nyquist Criterion would no longer be
satisfied. This is not the case for the ASFG controller.

Absolute stability and the Popov Criterion
A linear, time invariant (LTI) system in feedback with a nonlinearity n(e) is said to
be AS if it is asymptotically globally stable for any n(e) satisfying the sector con-
dition 0 < e � n(e) < e2. The saturation S(x) in (7.2) clearly satisfies the sector
condition, so absolute stability is certainly applicable to any system equivalent to
that seen in Figure 7.13.

The Popov Criterion is a sufficient condition for absolute stability. The cri-
terion requires that the return ratio T(s) have no poles in the closed right half plane,
and that there exists some q > 0 such that Re{(1þjqw) � T( jw)} > �1 for all w. If
these conditions are met, then the closed-loop system is AS. This inequality can
equivalently be written as wImT < q�1(ReTþ1), which provides for a simple gra-
phical interpretation. The Popov line passing through the critical point with slope
q�1 satisfies the equality wImPL¼ q�1 (RePLþ1). Therefore, the inequality holds
if the plot of ReT þ jwImT on the modified Nyquist plane lies entirely to the right of
some Popov line with positive slope.

All of the poles of TASFG have negative real parts and the left plot of
Figure 7.14 clearly shows the modified Nyquist plot for TASFG lying to the right of a
Popov line with slope q�1¼ 375. Thus, the Popov criterion is satisfied and the
ASFG control system truly is absolutely stable. TNS is also open loop stable, but by

P−CLTI

−CLTI P −TLTI

Figure 7.13 Standard feedback configurations and equivalent system used for
absolute stability analysis
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the definition of Nyquist stable there exists an w0 such that arg(TNS( jw0))¼�180
degrees and |TNS( jw0)| 	 1. Therefore, Re[(1þqjw0)TNS( jw0)]¼�|TNS( jw0)| 
 �1
and the NS control system cannot satisfy the Popov criterion.

Nonlinear dynamic compensator design
An adaptation of the control scheme in Figure 7.13 is shown in Figure 7.15. The
additional feedback path is the nonlinear dynamic compensator (NDC). For small
signals, the output of the summing junction in the NDC path is zero. Thus, the
effective return ratio for small signals is simply TNS. For large signals, however,
this difference is nonzero and the NDC feedback path is active. Therefore, the NDC
is able to reshape the effective return ratio of the controller for large signals.
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Figures 7.15 illustrates a series of loop transformations used to find an
equivalent system necessary for AS analysis. The return ratio of the equivalent
system TEQ is found to be

TEQ ¼ TNS � TNDC

1 þ TNDC
ð7:3Þ

where TNDC is the return ratio of the local NDC feedback loop and TNS is the return
ratio of the NS controller. The purpose of the NDC is to obtain an AS equivalent return
ratio TEQ. Thus, TASFG can serve as a target for TEQ. For a given desired equivalent
return ratio TD

EQ ¼ TASFG and TNS, a target NDC design TD
NDC can be found by

TD
NDC ¼ TNS � TD

EQ

1 þ TD
EQ

¼ TNS � TASFG

1 þ TASFG
ð7:4Þ

The order of the resulting TD
NDC is quite high, and its implementation could

pose serious challenges. Therefore, a lower-order NDC is sought. A reduced-order
NDC is thus developed by the manual placement of poles and zeros. An iterative
approach is indicated here as the resulting equivalent return ratio TEQ will differ
from TD

EQ, and AS will have to be verified. The resulting 9th-order TNDC and
40th-order TD

NDC are shown in the left plot of Figure 7.16.
The gain, zeros and poles of TNDC are K¼ 1.66� 1012, sz¼ (�1777, �46.37 �

61.83i, �37.7 � 119.9i) and sp¼ (�222.1, �33.93 � 25.45i, �15.71 � 60.84i,
�942.5 � 1257i, �377 � 2485i). Well-damped pole pairs at 6.75 and 250 Hz in
combination with lightly damped poles at 10 and 400 Hz capture the sharp bends in
TD

NDC seen around these frequencies. Likewise, well-damped zeros at 12.3 Hz and
lightly damped zeros at 20 Hz produce the remaining corner. A pole around 35 Hz
together with a zero around 282 Hz matches the modulus slope between these
frequencies.

P−CNS −+

−++
+

−+

−TNS

TNDC

TNDC

TNDC

TNDC−TNS (TNDC+1)–1

–TEQ

[]

[]

Figure 7.15 Equivalent systems for the NS with NDC controller
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The equivalent return ratio TEQ of the reduced-order TNDC and TNS is calcu-
lated using (7.3), and plotted together with TD

EQ in the right plot of Figure 7.16. The
modified Nyquist plot of TEQ is shown in the right plot of Figure 7.14 and lies
entirely to the right of the Popov line with slope q�1¼ 375. TEQ is Hurwitz;
therefore, the combined NS with NDC controller is AS.

Controller implementation
All control design work is performed using MATLAB and the Control Systems
Toolbox. The continuous time PZK models of the final control designs are
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discretized using Tustin’s method. This bilinear transformation uses the approx-
imation

z ¼ esT ¼ esT=2

e�sT
� 1 þ sT=2

1 � sT=2
ð7:5Þ

to map poles and zeros from the s-plane into the z-plane, where T is the sampling
time. The poles and zeros were grouped to form a cascade of second-order systems.
This approach of PZK design and CSOS implementation lessens the effects of
finite precision arithmetic and round-off errors.

Custom software developed with National Instruments LabWindows/CVI
executes on a National Instruments PXI 8106 Real Time Controller. The program
implements the 7th-order CASFG, 7th-order CNS and 9th-order TNDC at a loop rate of
10 kHz. It should be noted that digitizing, processing and outputting of signals must
take no longer than 1/10 kHz¼ 0.1 ms. This worst-case time delay is included in
the controller models during the design phase. However, a 0.1 ms time delay only
contributes 3.6 degrees of nonminimum phase at 100 Hz and 36 degrees at 1 kHz.
Thus, it is not a major limiting factor in maximizing the crossover frequency.
Companion software running on a Windows XP machine allows for loops to be
open and closed, disturbances enabled or disabled and saturation thresholds and
proportional gains to be adjusted in real time.

Disturbance environment
Although it would be desirable to mount the mechanism on a shake table, the
facility does not currently have this hardware. The robot is rigidly mounted to an air
suspended optics table, so the prismatic actuator itself is used for disturbance
injection. A disturbance signal is simply added to the output of the controller before
it is fed to the Techron amplifier input. A plot of the disturbance generating signal
and its power spectral density are shown in Figure 7.17. The signal is generated by
passing white noise through a 10 Hz first-order, low-pass filter and summing it with
a 5 Hz sinusoidal tone.

Closed-loop performance
The performance of both the ASFG and the NS with NDC controllers is verified in
closed-loop tests. The disturbance source described above is used in all cases, but tsat

is varied. A threshold of 150 mV is sufficiently high to ensure that control effort
saturation seldom occurs. In this small-signal regime, the NDC is inactive and the
effective return ratio of the NS with NDC controller is TNS. This is evidenced by
nearly 40 dB of disturbance rejection below 10 Hz as seen in the power spectral
density in the left plot of Figure 7.18. A saturation threshold of 50 mV is sufficiently
low to saturate the control effort some of the time. In this large signal scenario, the
NDC link is active and reduces the effective return ratio to a less aggressive loop
shape as shown in Figure 7.9. Comparing the performance of the ASFG controller
between the small- and large-signal cases, we see that its effectiveness was also
reduced in the saturated case as seen in the right plot of Figure 7.18.
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The first half of Figure 7.19 demonstrates the unstable nature of the NS con-
troller without the NDC. With tsat¼ 100 mV, the NS controller without NDC is able
to operate stably for some time until the control effort saturates. After this initial
saturation, the control output oscillates wildly, ensuring further saturation. Stability
can be regained by closing the NDC feedback path as shown in Figure 7.19 around
the 1 s mark.

In practical applications, a Nyquist-stable control system should never be
implemented with linear compensation only. This system is all but guaranteed to
oscillate in saturation. As such, it should always be designed with nonlinear
dynamic compensation to satisfy the conditions of absolute stability.
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7.3 Multipurpose nonlinear dynamic compensation

The previous section covers the use of nonlinear dynamic compensation to
provide absolute stability in the presence of a sector nonlinearity in the feedback
system. Multiple NDCs are now considered. The plant/actuator combination may
have several unrelated nonlinearities that can destabilize the system or substantially
reduce performance of systems where aggressive loop shaping is applied.

Consider the SITO feedback system shown in Figure 7.20. A(�) is a function
operator on the actuator command. The NDC has multiple feedback paths through
nonlinear functions B(�) and C(�) that satisfy the following conditions:

u0 ¼ fu 2 < : u� ¼ AðuÞ ¼ u ¼ BðuÞ ¼ CðuÞg ð7:6Þ

u1 ¼ fu 2 < : u� ¼ AðuÞ ¼ BðuÞ 6¼ u ¼ CðuÞg ð7:7Þ

u2 ¼ fu 2 < : u� ¼ AðuÞ ¼ CðuÞ 6¼ u ¼ BðuÞg ð7:8Þ

The set of inputs is the union of these three mutually exclusive sets. The
‘separation’ of nonlinear conditions (i.e. inputs in u1 or u2 results in NDC feedback
around or C1 or C2.) If u [ u0 there is no signal through either of the NDCs. If u [ u1,

C2

C1

PA(u)

C(u)

B(u)

N1

N2

– –

– –

–

+

+

+

+

+

+

–

u  u* 
y1

y2

Figure 7.20 SITO feedback system with NDC
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the NDC around C1 is active, and the equivalent feedback diagram is shown in Figure
7.21. The linear system in feedback connection to A is as follows:

TeqðsÞ ¼ � u

u� ¼
P2ðsÞC2ðsÞ þ P1ðsÞC1ðsÞ � C1ðsÞN1ðsÞ

1 þ C1ðsÞN1ðsÞ ð7:9Þ

Similarly, if u [ u2, then the system is equivalent to that shown in Figure 7.22
and the equivalent linear system is

TeqðsÞ ¼ � u

u� ¼
P1ðsÞC1ðsÞ þ P2ðsÞC2ðsÞ � C2ðsÞN2ðsÞ

1 þ C2ðsÞN2ðsÞ ð7:10Þ
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Figure 7.21 Equivalent system when u [ u1
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Often, one of the two compensator functions of the SITO controller limits the
sector width for which the system is absolutely stable. Consider the case where the
compensator C1(s) is very aggressive (large loop gain, steep roll-off that results in
the Nyquist locus to be far in the second and third quadrants) and C2(s) is less
aggressive (relatively small loop gain and a shallow roll-off that results in the
Nyquist locus residing primarily in the first and fourth quadrants). In this case, the
NDC need only be applied to the C1 as shown in Figure 7.23, which considers
position and rate nonlinearities of the actuator. M in this case would be a derivative
operation on the actuator input and the second NDC path corrects the system in
actuator rate saturation. Note that the effects of the saturations must be considered
separately.

7.3.1 Case study: anti-windup control
Consider a Region 3 wind turbine controller using collective blade pitch for rotor
rate regulation. The plant is nonlinear, so the model is obtained by linearizing the
system dynamics at a particular operating point related to wind speed. A type-1
controller is designed to reject step wind changes. The expected integrator windup
is observed when the blade pitch reaches its limit. An anti-windup compensator is
applied and this effect is reduced. When severe turbulent conditions are simulated,
poor regulation performance is observed, and the collective pitch rate is exceeded
over significant intervals (Figure 7.24). It is noted that this is associated with a
collective blade pitch rate saturation. A second anti-windup loop is placed in
parallel to the first (Figure 7.25). The nonlinear block is a deadzone with a width
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Figure 7.23 SITO feedback system with multiple nonlinearities and the NDC
applied to only one compensator
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equal to the blade pitch rate limits. The test is run again with the same wind con-
ditions, and the blade rate saturation is reduced (Figure 7.26). The high-speed shaft
rate is shown in Figure 7.27; it is noted the dual anti-windup system has superior
performance. The effectiveness of the gain reduction of the anti-windup controller
indicates that the relative stability of the controller with actuator rate saturation is
insufficient and the loop gain reduction provided by the second anti-windup loop
ameliorates this.
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7.3.2 Case study: nonlinear dynamic compensation for multiple
saturations

The high-order controller with NDC applied to the rudder roll stabilization con-
troller discussed in Chapter 6 is AS only if the rudder is not rate saturated.
Unfortunately, rate saturation is a key limitation in this application, especially for
rudder steering machines on larger vessels. A new scheme is presented in this
section that provides AS for rudder angle and rudder rate saturation. A block dia-
gram of the controller is shown in Figure 7.28. The saturation links in the NDC
called ‘rate loop’ and ‘position loop’ are identical to the saturations ‘rudder rate
limiter’ and ‘rudder limiter,’ respectively, in the rudder model. In rudder
rate saturation (no angle saturation), the equivalent compensator is shown in
Figure 7.29, which allows AS analysis described in Chapter 5. The equivalent
linear system connected to the saturation nonlinearity is

TerðsÞ ¼
1 þ GrðsÞCrðsÞ þ GyðsÞCyðsÞ � CrðsÞCn1ðsÞ s2

sþ1

� �

s 1 þ CrðsÞCn1ðsÞ s
sþ1

� �� � ð7:11Þ

Transfer function Cn1 is chosen such that Ter ¼ Te, and thus the system is AS for the
rudder rate saturation.

In rudder angle saturation (no rate saturation), the equivalent compensator is
shown in Figure 7.30. The saturation limits are identical to the rudder angle limits.
This system connected to the plant yields the feedback connection to the saturation
nonlinearity, and AS analysis is possible.

TeaðsÞ ¼
PrðsÞCrðsÞ þ PyðsÞCyðsÞ � NcðsÞCrðsÞ

1 þ NcðsÞCrðsÞ ð7:12Þ

PlantCompensator

e1(s) e2(s)
C(s) P(s)

y(s)

–
A(u)

–

u(s)

Nonlinear

+

+

N1(s) Phi1(u)

Phi2(u)N2(s)

Figure 7.28 Heading control and RRS with multiple feedback path NDC
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where PrðsÞ ¼ GrðsÞ 1
sþ1 , PyðsÞ ¼ GyðsÞ 1

sþ1, and Nc ¼ Cn3ðCn1 þ Cn2Þ ¼ Cn. The
structure of Nc is chosen because nonminimum phase zeros in Cn1 make the filter
Cn
Cn1

unstable, thus a cascade of two filters is not feasible. With the selected Nc,
Tea ¼ Te and the system is AS for the rudder angle saturation.

With this multipath NDC, the high-performance Nyquist-stable rudder roll stabi-
lizer is AS for angle and rate saturations. The last stability consideration is the con-
dition of simultaneous angle and rate saturation. This case does not lend itself to AS
analysis. As the Popov Criterion is only a sufficient condition, this is not an indication
of instability. Figure 7.31 shows the Nyquist plot for the very large signal loop gain for
the multipath NDC RRS with heading control around the rudder actuator. This is
an approximation of the loop gain when the saturation paths in the NDC shown in
Figure 7.28 are negligible compared to the linear paths (the actuator is saturated in
both rate and angle with large input signals). The critical point is not encircled if the
plot collapses on the origin due to broadband saturation. No instabilities have been
experienced in simulations where simultaneous saturations occur. While not rigorously
proven, the results indicate stability retention in the simultaneous saturation condition.
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Figure 7.31 Very large signal loop gain

The efficacy of the roll stabilizer is shown in computer simulations. Three RRS
will be compared: proportional derivative (PD), Nyquist-stable control with angle
saturation NDC and Nyquist-stable control with multipath NDC. The PD heading
controller described previously is used in conjunction with all three RRS systems.
Three rudder rate limits are considered: 20, 15 and 10 deg/s. Pierson-Moskowitz
linear approximation model using sr¼ 4.0, sy¼ 1, w0¼ 0.5 rad/s and z¼ 0.1 is
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used to model wave disturbances. A quantitative measure of the relative perfor-
mance is provided by the roll reduction percentage defined by Oda et al. [74].

Roll reduction ¼ AP � RRS
AP

� 100 ð7:13Þ

where AP is the standard deviation of roll rate with the heading controller on, RRS
off and RRS the standard deviation of roll rate with both the heading and RRS on.
Table 7.1 shows the roll reductions for the PD controller, high-order controller with
rudder angle NDC only (HOþNDC) and high-order controller with multipath NDC
(HOþmultipath NDC).

The multipath NDC system provides superior performance down to 10 deg/s
with the exception of a slight inferiority to HOþNDC with the fastest rudder.
Figure 7.32 shows the roll angles in open-loop, closed PD roll stabilizer, closed
HOþNDC and closed HOþmultipath NDC with the 15 deg/s rudder. The heading
controller is closed in all three cases, with a heading command of 0. The yaw
angle with the multipath NDC controller open and closed loop is shown in

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

0 500 1000 1500

−20

0

20

O
p
en

 l
o

o
p

−5

0

5

P
D

−5

0

5

H
O

+
N

D
C

−5

0

5

H
O

+
m

u
lt

ip
at

h

N
D

C

Time (s)

Figure 7.32 Roll angles

Table 7.1 Roll reduction percentage (‘x’ indicates immediate oscillation)

Rudder rate

20 deg/s 15 deg/s 10 deg/s

PD 68.0 67.5 65.4
HOþNDC 88.5 47.1 x
HOþmultipath NDC 86.7 83.8 71.5
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Figure 7.33. The disturbance event at approximately 310 s causes oscillation in the
high-order controller with rudder angle NDC only, resulting in poor roll reduction
performance. Figure 7.34 shows the rudder angle and rates for this controller,
where the rudder oscillations are evident. This represents a serious limitation of this
control system when slower steering machines are implemented. The rudder angle
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Figure 7.33 Yaw angle with multipath NDC open and closed
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Figure 7.34 Rudder angle/rate with closed-loop angle only NDC
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and rate signals for the same conditions are shown for the multipath NDC controller
in Figure 7.35. It is noted that in contrast to the high-order controller with angle
only NDC, this system does not oscillate. The angle and rate summing junction
outputs are shown in Figure 7.36 (15 deg/s rudder). There is saturation when these
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Figure 7.35 Rudder angle/rate with closed-loop multipath NDC
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Figure 7.36 Multipath NDC deadzone outputs
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functions have nonzero values. The figure shows that both rudder angle and rate
saturations occur over the 1500 s time interval (Table 7.1).

7.4 Variable gain for SITO feedback systems

The focus of the book thus far is primarily on the control of LTI SISO systems.
Taking into consideration the feedback limitations presented by the plant, actua-
tors, sensors, environment, etc. the implementation of feedback maximization can
produce a high-performance controller for this type of system. Unfortunately,
rarely is the control designer presented with such a tidy problem. More often than
not, the plant will not satisfy the conditions of linearity, or time invariance. This
ubiquitous problem of actuator saturation has already been addressed in the pre-
vious chapter. It is very common for the plant dynamics to be a function of
environmental states. Aircraft autopilots are typically designed using linear control
theory; however, aircraft dynamics change as a function of its location in the ‘flight
envelope’, the aircraft’s airspeed, and altitude. This is also the case with surface
vessel autopilots, where the dynamics are a function of the ship’s speed. Wind
turbines are nonlinear systems; however, at particular wind speeds their dynamics
can be described using linear models.

An interesting application for gain scheduling is a variable gain swap for a
SITO controller. The block diagram of this system is shown in Figure 7.37. Recall
the concept of frequency separation for these controllers, whereby disjoint fre-
quency intervals are defined where the feedback for each of the two plant outputs is
negative. Given the plant transfer function vector P(s) [ F2� 1(s), the outputs are
rated according to importance (e.g. regulation of p1(s) is of greater importance than
p2(s)). The nominal feedback controller C(s) [ F1� 2(s) is designed. A system is
then designed that ‘swaps’ gain from the ‘more important’ controller to the ‘less

e1(s)

e2(s)

y2(s)

y1(s)P(s)

–

–

u(s)+

+

C1(s)

C2(s)

S(e1,e2)

Figure 7.37 SITO Controller with Gain Swapping
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important’ compensator C(s) as a function of the output of the more important
plant. This improves the performance of the important plant without requiring
greater overall feedback (it is assumed that the bandwidth is as high as the system
limitations allow). It is imperative that the relative stability of the system is suffi-
cient at all possible values of the output of S(e1, e2). This typically requires wider
frequency intervals of minimum phase margin than what is required for the fixed
SITO controller. The speed of the variable gain system should be slower than the
dynamics of the plant. A low pass filter at the output of the variable gain system can
effectively ‘slow’ the gain changes.

7.4.1 Case study: HSS rate error variable gain SITO controller
The requisite frequency separation for the SITO collective blade pitch controller
described in Chapter 6 is a substantial limitation. As rotor rate regulation is the
primary function of the collective blade pitch controller in Region 3, a variable gain
strategy is proposed to apply more rate feedback when error is large. This comes at
the expense of lowering tower acceleration feedback to allow increased rate feed-
back bandwidth.

To quantify the relative performance of the SITO controllers, two dimension-
less parameters are defined. The high-speed shaft rate standard deviation to rated
speed ratio (SDRS) is

SDRS ¼ shss

whssðratedÞ
ð7:14Þ

where shss and whss(rated) are the high-speed shaft rate standard deviation and the
Region 3 rated high-speed shaft rate, respectively, in the same units. As the turbines
in this study are constant torque, SDRS provides a measure of power variation in
Region 3.

The secondary goal of the collective blade pitch SITO controller is tower fore/
aft acceleration attenuation. The tower fore/aft acceleration ratio (TFAAR) is

TFAAR ¼ saðclÞ
saðolÞ

ð7:15Þ

where sa(cl) is the tower fore/aft acceleration standard deviation with the SITO
controller closed, and sa(ol) is the tower fore/aft acceleration standard deviation
with high-speed shaft rate feedback only (referred to as the baseline).

FAST simulations are performed for both turbines over 10 min in turbulent
wind. Table 7.2 shows the rated high-speed shaft rate, the high-speed shaft rate
standard deviation and tower fore/aft acceleration in open- and closed-loop con-
ditions for both turbines with the SITO controllers with loop transmissions shown
in Figure 7.38.
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Table 7.2 SITO control performance in turbulent wind

CART2 5 MW

Rated shaft speed (rpm) 1800 1174
HSS rate std (rpm) 31.9 83.46
Tower fore/aft acc std (ol) (m/s/s) 0.3549 0.2988
Tower fore/aft acc std (cl) (m/s/s) 0.2193 0.1719

The TFAAR for the CART2 and 5 MW turbines are 0.62 and 0.58, respec-
tively. The performance is comparable, which is consistent with the fact that both
controllers apply close to the same feedback at the tower first mode frequency. The
SDRS for the CART2 and 5 MW turbines are 0.018 and 0.071, respectively.
The 5 MW SDRS is four times greater than that of CART2. This is consequence of
the 5 MW wind turbine plant dynamics restricting available feedback to greater
effect than for the CART2 turbine.

The variable gain algorithm is a piecewise continuous function of high-speed
shaft rate (whss)¼ 1174 rpm and gear ratio rg¼ 97. The output is a gain applied to
the nominal tower acceleration feedback compensator, kstruct(5v)(whss) and the
nominal high-speed shaft rate feedback compensator, krate(5v)(whss). Variable gain
kstruct(5v)(whss) is defined in Table 7.3. The constants whss(i), i¼ 1, 2, 3, 4, are
threshold values. If the high-speed shaft rate is in the interval bounded by whss(2)

and whss(3), the gain kstruct(5v)(whss) is unity and the collective blade pitch controller
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is the SITO controller previously described. If the shaft speed is outside this
interval, kstruct(5v)(whss) is reduced linearly until the shaft speed is outside the
interval bounded by whss(1) and whss(4) where this gain is fixed at 0.05. Given this
gain, the rate regulator gain is krate(5v)(whss)¼�4kstruct(5v)(whss) þ 5.

For the 5 MW wind turbine, the threshold values are whss(i) are 1039, 1125,
1222 and 1309 rpm for i¼ 1, 2, 3, 4. Figure 7.39 shows the loop transmission of
the variable gain controller with different high-speed shaft rate errors. The loop
transmission associated with the largest rate error (light blue) has negligible feed-
back at the first tower mode frequency (approximately 2 rad/s) and has about one
octave more bandwidth (1 rad/s) than the nominal SITO controller (0.4 rad/s).

Figures 7.40 and 7.41 show the high-speed shaft rate for the 5 MW turbine
with high-speed shaft rate feedback only (baseline), fixed gain SITO and variable
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Figure 7.39 Variable gain 5 MW SITO loop transmission. Dark solid line is the
standard SITO loop transmission. Dark dotted line, grey solid line and
grey dotted line loop transmission are in conditions of increasing high-
speed shaft rate error

Table 7.3 HSS rate error variable gain algorithm

whss kstruct(5v)(whss)

whss 
 whss(1) 0.05

whss(1) < whss 
 whss(2)
1
rg
ðwhss � whssð1ÞÞ

whss(2) < whss 
 whss(3) 1.0

whss(3) < whss 
 whss(4) � 1
rg
ðwhss � whssð3ÞÞ þ 1

whss > whss(4) 0.05
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gain SITO control in turbulent wind conditions. It is evident that variable gain
system has superior performance compared to the fixed gain SITO controller. The
SDRS for the variable gain controller is 0.0575, a 19% improvement over the fixed
SITO controller. Figure 7.42 shows the tower fore/aft acceleration for the same
controllers. As the acceleration feedback is reduced as a function of rate error, the
variable gain controller has inferior performance to the fixed gain SITO system for
tower load mitigation, but clearly superior to the baseline controller. The TFAAR
for the variable gain controller is 0.67, a 16% reduction in performance compared
to the fixed gain controller. This relative performance is a consequence of the
variable gain strategy reducing the tower mode feedback when shaft rate error
exceeds the threshold.

7.5 Exercises

1. Explain why a Nyquist-stable control should not be deployed without non-
linear dynamic compensation.

2. Design a PI controller for the plant PðsÞ ¼ 1000
sþ10sþ100. Write a Simulink model

with a unit saturation in the forward path. The reference is 100 1+. Design an
anti-windup compensator for this controller. Compare the step response of
these two systems.
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Figure 7.42 5MW tower fore/aft acceleration for baseline, fixed gain and variable
gain collective blade pitch control
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3. Replace the saturation with the multiple saturation in the RRS case study
(position and velocity saturation). Design a dual anti-windup controller for this
system.

4. How can the control designer approximate the performance of the feedback
system with nonlinear dynamic compensation in the very large signal
condition?

5. Design a nonlinear dynamic compensator for the controller designed in
Chapter 6, Exercise 6.

6. Design a Nyquist-stable controller for the plant of Exercise 12 in Chapter 6.
There is a unit saturation in the forward path between the compensators and
the plant. Design an NDC for the C2(s) controller. Show that the system is
absolutely stable.

7. Design a variable gain system for the controller of the previous problem. Write
a Simulink model to test the efficacy of the controller.
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Appendix

Proof of Bode sensitivity integral

Consider the response of a feedback system with sensor noise, and a disturbance
additive at the output. The response of the system to the disturbance is yd(s)¼ S(s)d
(s), where S(s) is the sensitivity function of the feedback system and yd(s) is the
Laplace transform of the system’s response to disturbance signal d(s). The response
of the system to the sensor noise, n(s), is yn(s)¼�M(s)n(s), where M(s) is the
complementary sensitivity function. Assume that the loop transmission function
T(s) has no hidden unstable modes. Then the feedback system is stable if S(s) is
bounded in the CRHP, and CRHP poles and zeros of the plant P(s) and compen-
sator C(s) appear with the same multiplicity in T(s).

It is assumed that T(s) can be factored thusly.

TðsÞ ¼ ~T ðsÞB�1
p ðsÞBzðsÞ ðA:1Þ

where Bz(s) is the Blaschke product of Nz ORHP zeros including multiplicities,
Z¼ {zi : Re(zi) > 0; T(zi)¼ 0}

BzðsÞ ¼
YNz

i¼1

zi � s

zi þ s
ðA:2Þ

Note that Bz is an all-pass, unit gain system. Similarly,

Bp ¼
YNp

i¼1

pi � s

pi þ s
ðA:3Þ

is the Blaschke product of Np ORHP poles including multiplicities,
P ¼ fpi : ReðpiÞ > 0;T�1ðpiÞ ¼ 0g: ~T ðsÞ is proper with no poles or zeros in the
ORHP. For each CRHP zero z of multiplicity m,

SðzÞ ¼ 1

d

ds
S js¼z ¼ 0

..

. ¼ 0
di

dsi
S js¼z ¼ 0



for i¼ 1, 2, . . . , m � 1 and S is the sensitivity function. Similarly, at each CRHP
pole p of multiplicity n,

MðpÞ � 1

d

ds
M js¼p ¼ 0

..

. ¼ 0
di

dsi
M js¼p ¼ 0

for i¼ 1, 2, . . . , n � 1 and M is the complimentary sensitivity function. Assume the
feedback system is stable. Then S and M have no CRHP poles. Express the sensi-
tivity function and its derivative constraints in terms of the magnitude |S(jw)| by
removing the zeros of S at the ORHP poles of T. Factor the sensitivity function
using the Blaschke product.

SðsÞ ¼ ~SðsÞBpðsÞ ðA:4Þ
Since jBpðjwÞj ¼ 1 8 w; jSðjwÞj ¼ j~SðjwÞj 8 w, it is necessary to constrain log S(s)

and di

dsilogSðsÞ at infinity. Given function F(s), consider the following class of func-
tions:

NðRÞ ¼ sup
q

jFðRejqÞj ðA:5Þ

where q 2 �p
2 ;

p
2

� �
. F(s) is said to be in class R provided limR!1 1

R NðRÞ ¼ 0. If

T(s) is a proper rational function, then log T(s) and di

dsilogTðsÞ are in class R. Con-
straints of S(s) at ORHP zeros can be expressed in terms of S(jw).

Theorem Let f(s) be analytic and nonzero in the CRHP except for possible zeros on
the imaginary axis. Assume di

dsilog f ðsÞ is in class R for i¼ 0, 1, . . . . Then at each
point s0¼ x0 þ jy0, x0 > 0.

logjf ðs0Þj ¼ 1
p

ð1

�1
logjf ðjwÞj x0

x2
0 þ ðy0 � wÞ2 dw

di

dsi
log f ðsÞs¼s0

¼ 1
p

ð1

�1

di

dsi
log f ðsÞs¼jw

x0

x2
0 þ ðy0 � wÞ2 dw

The proof is an example of the solution of Poisson integrals [16]. Set f ðsÞ ¼ ~SðsÞ.
Recall SðsÞ ¼ ~SðsÞBpðsÞ and note SðzÞ ¼ ~SðzÞBpðzÞ ¼ 1. So

logj~SðzÞj ¼ 1
p

ð1

�1
logjSðjwÞj x0

x2
0 þ ðy0 � wÞ2 dw ðA:6Þ

can be expressed as the following.
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Theorem Let z¼ x þ jy be an ORHP zero of T(s). Then if the feedback system is
stable, the sensitivity function must satisfy the following:

plogjB�1
p ðzÞj ¼

ð1

�1
logjSðjwÞjdqzðwÞ ðA:7Þ

where qz(w)¼ arctan w�y
x .

A.1 Bode’s integral theorem

The bandwidth constraint is quantified by the following inequality:

jTðjwÞj � A

w1þk
ðA:8Þ

for w > w0. k > 0, so the loop transmission roll-off is greater than first order. This
assumption is not restrictive, as most plant frequency responses roll off at high
frequency at a greater slope than this. An upper bound on loop transmission mag-
nitude at some frequency w0 is assumed.

A

w1þk
0

� a ðA:9Þ

Theorem Assume loop transmission T(s) has a finite number of ORHP poles
P¼ {pi : Re(pi) > 0, T�1(pi)¼ 0} for i¼ 1, 2, . . . Np including multiplicities and
assume limR ? ?sup|s|�R,Re[s]�0R|T(s)|¼ 0. Then, if the closed-loop system is
stable, the sensitivity S(s) must satisfy

p
XNp

i¼1

Re½pi� ¼
ð1

0

logjSðjwÞjdw ðA:10Þ

Proof Recall logjf ðs0Þj ¼ 1
p

Ð1
�1

logjf ðjwÞj x0

x2
0þðy0�wÞ2 dw, where f(s) is analytic and

nonzero in the CRHP except for possible jw axis zeros. f ðsÞ ¼ ~SðsÞ; s ¼ x > 0, so

logj~SðxÞj ¼ 2
p

Ð1
0

logjSðjwÞj x
x2þðy�wÞ2 dw. Note that logjSðjwÞj x2

x2þðy�wÞ2 converges to

logjSðxÞj as x ? ?, which suggests limx!1xlogj~SðxÞj ¼ limx ! 12
pÐ1

0
logjSðjwÞj x2

x2þðy�wÞ dw can be used to evaluate the integral of the log sensitivity

frequency response over all nonnegative frequencies. Consider the following.

1.
Ð1
0

logjSðjwÞjdw ’ Ðw
0

logjSðjwÞjdw for sufficiently large w.

2. For w 2 ½0;w�, the sequence n2

n2þw2 converges to 1 as n ? ?.
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The power series expansion of log S(s)¼�log [1 þ T(s)] for |T(s)| < 1 is

logSðsÞ ¼ �TðsÞ þ T2ðsÞ
2

þ HOT ðA:11Þ

Recall the assumption limR ? ?sup|s|�R,Re[s]�0R|T(s)|¼ 0, so w log(S(jw)) ? 0 as w
? ?, so there exists a frequency w0 and positive constants M0 and d such that
jlogjSðjwÞjj � M0

w1þd for w > w0. For wx> w0

ð1
wx

jlogjSðjwÞjjdw �
ð1
wx

M0

w1þd dw ¼ M0

dwd
x

ðA:12Þ

So for any positive e> 0, there exists a frequency wx such that the integral of the log
sensitivity function over frequencies higher than this is bounded by this value. So if
T(s) has no imaginary poles then,

limx!1
ðwx

0

logjSðjwÞj x2

x2 þ w2
dw ¼

ðwx

0

logjSðjwÞjdw ðA:13Þ

Utilizing the decomposition of the sensitivity function using the Blaschke product,
the following expression is obtained:

logj~SðxÞj ¼ logjB�1
p ðxÞj þ logjSðxÞj ¼

XNp

i¼1

logj pi þ x

pi � x

����þ logjSðxÞj ðA:14Þ

Since the limit of x log|S(x)| is zero as x ? ?,

limx!1xlogj~SðxÞj ¼
XNp

i¼1

limx!1xlogj pi þ x

pi � x
j ðA:15Þ

The following Maclaurin series expansion is employed for |a| < 1.

logð1 þ aÞ ¼ a � a2

2
þ . . .þ ð�1Þn an

n
þ . . . ðA:16Þ

So for x > |p|,

log
pi þ x

x � pi
¼ log

1 þ pi
x

1 � pi

x

¼ pi þ pi

x
þ HOT ðA:17Þ

Thus, limx!1xlog piþx
pi�x

��� ��� ¼ 2Re pi½ � and

p
XNp

i¼1

Re½pi� ¼
ð1

0
logjSðjwÞjdw ðA:18Þ
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Equation (A.18) indicates that the plot of log|S(jw)| versus radian frequency
has a greater area of sensitivity increase than sensitivity decrease if the loop
transmission function has ORHP poles. This difference is proportional to the sum
of the real parts of the unstable open-loop poles. If there are no unstable open-loop
poles (Np¼ 0), these areas are equal. This is the original formula found by H. Bode.

This relationship gives great insight into the limitations of control performance
for systems with greater than first-order roll-off. It is noted that feedback systems
with low-pass loop transmission functions that roll off at first order have no posi-
tive feedback (the T-plane plot lies in the first and fourth quadrants). For stable
systems with greater than first-order roll-off (quite typical for actual systems where
the response drops sharply at high frequency), the integral of log sensitivity with
positive feedback is equal to that of negative feedback. As negative feedback is
increased over an interval of frequencies, positive feedback is increased at other
frequencies. From a design perspective, the compensator must be designed so that
there is positive feedback at frequencies where there is low disturbance power.
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multiple-input, multiple-output
(MIMO), 8, 52

NDC: see nonlinear
dynamic compensator
(NDC)

negative feedback, 31
defined, 28

NMP system: see nonminimum
phase (NMP) system

nonlinear dynamic compensator
(NDC), 128–129, 128f–129f

anti-windup controller, 145–147
for multiple saturations, 148–155
multipurpose, 143–155
SITO feedback system with,

143f–144f
for a vibration suppression system,

129–142
nonminimum phase lag, 14–16
nonminimum phase (NMP)

system, 13
Bode plot of, 14f
delay, 15–16, 16f

notch, 46
Nyquist contour, 54–55
modified, 60–61

Nyquist plot, 55, 56f–63f
for absolute stability analysis, 137f
of closed-loop system, 61–62, 63f
of C(s)P(s), 86f
Gershgorin Circles on, 75f
of plant, 107, 107f
for TASFG, 136, 137f
of T-plane, 62–63

Nyquist Stability Criterion, 49,
55–63

generalized, 68
loop transmission function, 61–62

Nyquist-stable controller, 67, 128
design, 134, 135f
equivalent systems for, 138f
Nichols plots for, 133f, 136
practical applications, 141
unstable nature, 141, 142f

Nyquist-stable system, 109, 110f
controller, 120–121

observability matrix, 20
OLHP: see open left half plane

(OLHP)
open left half plane (OLHP), 8
poles, 50

open-loop feedback system, 1, 2f
weaknesses in, 2
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open-loop gain, 27
open-loop stability, 85
open right half plane (ORHP), 8
poles, 55

Blaschke product of, 165
constraints of S(s) at, 166

ORHP: see open right half plane
(ORHP)

overshoot
excessive, 4f
as transient response

characteristic, 4

parallel robots, multiaxis control
of, 69–74, 70f

compensator design, 71–74,
73f–74f

end-effector, 70
fourth-order compensators, 71
frequency responses, 71,

71f–74f
limited-DOF parallel

mechanism, 70
passive joints, 70
plant identification, 70–71,

71f–72f
set point control of, 78

parallel robots, PUS –RR model,
129, 130f

parameters
variations, feedback control

system and, 3
phase margin, of T-plane plot, 64
PID: see proportional-integral-

derivative (PID) controller
plant, 1, 2f
alignment, 114
characteristics, 7
descriptions, 7–25
dynamics, mathematical model

of, 7–8
frequency-domain models, 9–16

(see also Frequency-domain
models, plant)

knowledge, 37, 43

limits
poles, 32–34, 33f, 43
zeros, 34–37, 35f–37f, 43

linearization, 22–23
Nyquist plot of, 107, 107f
sensitivity, 38f
time-domain models, 16–22
tracking (see Tracking, feedback

system)
Poisson integrals, 166
pole shifting, 85
Popov Criterion, 86–87
absolute stability and,

136–137
positive feedback, 31
defined, 29

prefilters, 4, 46–48, 46f–47f
proportional-integral-derivative

(PID) controller, 127
proportional-integral (PI)

compensator (C(s)),
127, 128f

quadratic symmetric Lyapunov
function, 84

ramp function, 51
relative stability, 63–67
return difference, 27
return ratio, 27
SITO, 119f

RHP zeros: see right half plane
(RHP) zeros

right half plane (RHP)
poles, 51, 54
zero natural frequency, 59
zero phase, 59

right half plane (RHP) zeros, 12
example, 14–15
impact on feedback

controller, 37
rise time, as transient response

characteristic, 4
Routh Criterion, 54
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rudder, ship
case study, 115–119
mathematical model of, 118, 118f

scalar gain, 55
SDRS: see Standard deviation to

rated speed ratio (SDRS)
second-order system, 7–8
differential equation for, 16–17

sector condition, 83
sensitivity
complementary, 30
defined, 30
effect of feedback on, 29–30
plot, 38f

sensitivity function, 167–168
sensor noise, 95
as bandwidth limitation, 31–32

Seoul National University’s
Eclipse 5-face machining
robot, 79f

Eclipse manipulator, 80–82
settling time
excessive, 5f
as transient response

characteristic, 4
signum function, 50
single-input, single-output (SISO),

8, 49
block diagram of, 27, 27f

single-input, two-output (SITO),
8, 113–121

block diagram of, 113f
closed-loop step response, 116f
control, example of, 115
return ratio, 119f

SISO: see single-input, single-output
(SISO)

SITO: see single-input, two-output
(SITO)

SITO feedback system, 143f–144f
FAST simulations, 156, 157f
high-speed shaft rate, 156, 157f,

158, 159f

HSS rate error variable gain,
156–160, 158t

tower fore/aft acceleration,
160f

variable gain for, 155–160,
158f, 158t

‘smart’ actuators, 109
s-plane contour, 59–62
Standard deviation to rated speed

ratio (SDRS), 121
state, defined, 16–17
state differential equation
solution of, 17–18, 19f

state matrix
diagonalization of, 20–21

state space realization
controllability, 19–20
minimal, 20
observability, 20

state space realizations, of BIBO
stability, 52–53

Taylor expansion, 22
TFAAR: see tower fore/aft

acceleration ratio
(TFAAR)

time-domain models
plant, 16–22

time invariant system, 8
TISO: see two-input, single-output

(TISO)
tower fore/aft acceleration ratio

(TFAAR), 156, 160
T-plane plot, 55, 107, 108f
gain margin, 65, 65f–66f
of loop transmission function,

55–57
Nyquist plot, 62–63
of Nyquist-stable system,

109, 110f
phase margin, 64
in phase-stabilized controllers,

65–66, 65f–66f
zero net encirclements, 63–64
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tracking, feedback system, 2–5, 2f
disturbances rejection, 3, 3f
sensitivity to parameter

variation, 3
transient response, 4–5, 4f–5f

transfer function, 10–11
from state equation, 21–22

transfer matrix, 11
stability of, 67

transient response, 4–5, 4f–5f
Tustin’s method, 140
two-input, single-output (TISO), 8,

109, 111–113, 111f, 112f–113f
block diagram, 111f
controller, example of, 112,

112f–113f
step response of, 113f

unit step function, 51
unmanipulable singularity, 82
unstable singularity, 82

vibration suppression system, NDC
of, 129–142

absolutely stable fixed gain
(ASFG) controller, 132–134

absolute stability analysis, 136,
136f–137f

actuator, 130
closed-loop performance, 140–141,

142f
controller implementation,

139–140
disturbance signals, 140, 141f
gain zeros and poles of P(s),

131
gyroscope sensors, 130–131,

131f
loop transformations, 138f
nonlinear dynamic compensator

(NDC), 137–139, 139f
Nyquist-stable (NS) controller

CNS(s), 134, 135f
pole-zero-gain (PZK) model of,

131, 132f
Popov Criterion, 136–137
saturation mechanisms,

134–136
system identification, 131–132

white box model, 24
wind turbines, case study,

98–106

zero input stability, 52–54
zero-state response, 50
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